| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snid | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| snid.1 |
|
| Ref | Expression |
|---|---|
| snid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snid.1 |
. 2
| |
| 2 | snidb 3663 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: vsnid 3665 exsnrex 3675 rabsnt 3708 sneqr 3801 undifexmid 4238 exmidexmid 4241 ss1o0el1 4242 exmidundif 4251 exmidundifim 4252 exmid1stab 4253 unipw 4262 intid 4269 ordtriexmidlem2 4569 ordtriexmid 4570 ontriexmidim 4571 ordtri2orexmid 4572 regexmidlem1 4582 0elsucexmid 4614 ordpwsucexmid 4619 opthprc 4727 fsn 5754 fsn2 5756 fvsn 5781 fvsnun1 5783 acexmidlema 5937 acexmidlemb 5938 acexmidlemab 5940 brtpos0 6340 mapsn 6779 mapsncnv 6784 0elixp 6818 en1 6893 djulclr 7153 djurclr 7154 djulcl 7155 djurcl 7156 djuf1olem 7157 exmidonfinlem 7303 elreal2 7945 1exp 10715 hashinfuni 10924 wrdexb 11008 0bits 12303 ennnfonelemhom 12819 dvef 15232 djucllem 15773 bj-d0clsepcl 15898 |
| Copyright terms: Public domain | W3C validator |