| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snid | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| snid.1 |
|
| Ref | Expression |
|---|---|
| snid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snid.1 |
. 2
| |
| 2 | snidb 3663 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: vsnid 3665 exsnrex 3675 rabsnt 3708 sneqr 3801 undifexmid 4237 exmidexmid 4240 ss1o0el1 4241 exmidundif 4250 exmidundifim 4251 exmid1stab 4252 unipw 4261 intid 4268 ordtriexmidlem2 4568 ordtriexmid 4569 ontriexmidim 4570 ordtri2orexmid 4571 regexmidlem1 4581 0elsucexmid 4613 ordpwsucexmid 4618 opthprc 4726 fsn 5752 fsn2 5754 fvsn 5779 fvsnun1 5781 acexmidlema 5935 acexmidlemb 5936 acexmidlemab 5938 brtpos0 6338 mapsn 6777 mapsncnv 6782 0elixp 6816 en1 6891 djulclr 7151 djurclr 7152 djulcl 7153 djurcl 7154 djuf1olem 7155 exmidonfinlem 7301 elreal2 7943 1exp 10713 hashinfuni 10922 wrdexb 11006 0bits 12270 ennnfonelemhom 12786 dvef 15199 djucllem 15736 bj-d0clsepcl 15861 |
| Copyright terms: Public domain | W3C validator |