| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snid | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| snid.1 |
|
| Ref | Expression |
|---|---|
| snid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snid.1 |
. 2
| |
| 2 | snidb 3673 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sn 3649 |
| This theorem is referenced by: vsnid 3675 exsnrex 3685 rabsnt 3718 sneqr 3814 undifexmid 4253 exmidexmid 4256 ss1o0el1 4257 exmidundif 4266 exmidundifim 4267 exmid1stab 4268 unipw 4279 intid 4286 ordtriexmidlem2 4586 ordtriexmid 4587 ontriexmidim 4588 ordtri2orexmid 4589 regexmidlem1 4599 0elsucexmid 4631 ordpwsucexmid 4636 opthprc 4744 fsn 5775 fsn2 5777 fvsn 5802 fvsnun1 5804 acexmidlema 5958 acexmidlemb 5959 acexmidlemab 5961 brtpos0 6361 mapsn 6800 mapsncnv 6805 0elixp 6839 en1 6914 djulclr 7177 djurclr 7178 djulcl 7179 djurcl 7180 djuf1olem 7181 exmidonfinlem 7332 elreal2 7978 1exp 10750 hashinfuni 10959 wrdexb 11043 0bits 12385 ennnfonelemhom 12901 dvef 15314 djucllem 15936 bj-d0clsepcl 16060 |
| Copyright terms: Public domain | W3C validator |