ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snid Unicode version

Theorem snid 3650
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
snid.1  |-  A  e. 
_V
Assertion
Ref Expression
snid  |-  A  e. 
{ A }

Proof of Theorem snid
StepHypRef Expression
1 snid.1 . 2  |-  A  e. 
_V
2 snidb 3649 . 2  |-  ( A  e.  _V  <->  A  e.  { A } )
31, 2mpbi 145 1  |-  A  e. 
{ A }
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3625
This theorem is referenced by:  vsnid  3651  exsnrex  3661  rabsnt  3694  sneqr  3787  undifexmid  4223  exmidexmid  4226  ss1o0el1  4227  exmidundif  4236  exmidundifim  4237  exmid1stab  4238  unipw  4247  intid  4254  ordtriexmidlem2  4553  ordtriexmid  4554  ontriexmidim  4555  ordtri2orexmid  4556  regexmidlem1  4566  0elsucexmid  4598  ordpwsucexmid  4603  opthprc  4711  fsn  5731  fsn2  5733  fvsn  5754  fvsnun1  5756  acexmidlema  5910  acexmidlemb  5911  acexmidlemab  5913  brtpos0  6307  mapsn  6746  mapsncnv  6751  0elixp  6785  en1  6855  djulclr  7110  djurclr  7111  djulcl  7112  djurcl  7113  djuf1olem  7114  exmidonfinlem  7255  elreal2  7892  1exp  10642  hashinfuni  10851  wrdexb  10929  ennnfonelemhom  12575  dvef  14906  djucllem  15362  bj-d0clsepcl  15487
  Copyright terms: Public domain W3C validator