![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snid | Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snid |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snidb 3648 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 |
This theorem is referenced by: vsnid 3650 exsnrex 3660 rabsnt 3693 sneqr 3786 undifexmid 4222 exmidexmid 4225 ss1o0el1 4226 exmidundif 4235 exmidundifim 4236 exmid1stab 4237 unipw 4246 intid 4253 ordtriexmidlem2 4552 ordtriexmid 4553 ontriexmidim 4554 ordtri2orexmid 4555 regexmidlem1 4565 0elsucexmid 4597 ordpwsucexmid 4602 opthprc 4710 fsn 5730 fsn2 5732 fvsn 5753 fvsnun1 5755 acexmidlema 5909 acexmidlemb 5910 acexmidlemab 5912 brtpos0 6305 mapsn 6744 mapsncnv 6749 0elixp 6783 en1 6853 djulclr 7108 djurclr 7109 djulcl 7110 djurcl 7111 djuf1olem 7112 exmidonfinlem 7253 elreal2 7890 1exp 10639 hashinfuni 10848 wrdexb 10926 ennnfonelemhom 12572 dvef 14873 djucllem 15292 bj-d0clsepcl 15417 |
Copyright terms: Public domain | W3C validator |