ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snid Unicode version

Theorem snid 3649
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
snid.1  |-  A  e. 
_V
Assertion
Ref Expression
snid  |-  A  e. 
{ A }

Proof of Theorem snid
StepHypRef Expression
1 snid.1 . 2  |-  A  e. 
_V
2 snidb 3648 . 2  |-  ( A  e.  _V  <->  A  e.  { A } )
31, 2mpbi 145 1  |-  A  e. 
{ A }
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  vsnid  3650  exsnrex  3660  rabsnt  3693  sneqr  3786  undifexmid  4222  exmidexmid  4225  ss1o0el1  4226  exmidundif  4235  exmidundifim  4236  exmid1stab  4237  unipw  4246  intid  4253  ordtriexmidlem2  4552  ordtriexmid  4553  ontriexmidim  4554  ordtri2orexmid  4555  regexmidlem1  4565  0elsucexmid  4597  ordpwsucexmid  4602  opthprc  4710  fsn  5730  fsn2  5732  fvsn  5753  fvsnun1  5755  acexmidlema  5909  acexmidlemb  5910  acexmidlemab  5912  brtpos0  6305  mapsn  6744  mapsncnv  6749  0elixp  6783  en1  6853  djulclr  7108  djurclr  7109  djulcl  7110  djurcl  7111  djuf1olem  7112  exmidonfinlem  7253  elreal2  7890  1exp  10639  hashinfuni  10848  wrdexb  10926  ennnfonelemhom  12572  dvef  14873  djucllem  15292  bj-d0clsepcl  15417
  Copyright terms: Public domain W3C validator