![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snid | Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snid |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snidb 3621 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-sn 3597 |
This theorem is referenced by: vsnid 3623 exsnrex 3633 rabsnt 3666 sneqr 3758 undifexmid 4190 exmidexmid 4193 ss1o0el1 4194 exmidundif 4203 exmidundifim 4204 unipw 4213 intid 4220 ordtriexmidlem2 4515 ordtriexmid 4516 ontriexmidim 4517 ordtri2orexmid 4518 regexmidlem1 4528 0elsucexmid 4560 ordpwsucexmid 4565 opthprc 4673 fsn 5683 fsn2 5685 fvsn 5706 fvsnun1 5708 acexmidlema 5859 acexmidlemb 5860 acexmidlemab 5862 brtpos0 6246 mapsn 6683 mapsncnv 6688 0elixp 6722 en1 6792 djulclr 7041 djurclr 7042 djulcl 7043 djurcl 7044 djuf1olem 7045 exmidonfinlem 7185 elreal2 7807 1exp 10522 hashinfuni 10728 ennnfonelemhom 12386 dvef 13821 djucllem 14174 bj-d0clsepcl 14299 exmid1stab 14372 |
Copyright terms: Public domain | W3C validator |