ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snid Unicode version

Theorem snid 3674
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
snid.1  |-  A  e. 
_V
Assertion
Ref Expression
snid  |-  A  e. 
{ A }

Proof of Theorem snid
StepHypRef Expression
1 snid.1 . 2  |-  A  e. 
_V
2 snidb 3673 . 2  |-  ( A  e.  _V  <->  A  e.  { A } )
31, 2mpbi 145 1  |-  A  e. 
{ A }
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   _Vcvv 2776   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sn 3649
This theorem is referenced by:  vsnid  3675  exsnrex  3685  rabsnt  3718  sneqr  3814  undifexmid  4253  exmidexmid  4256  ss1o0el1  4257  exmidundif  4266  exmidundifim  4267  exmid1stab  4268  unipw  4279  intid  4286  ordtriexmidlem2  4586  ordtriexmid  4587  ontriexmidim  4588  ordtri2orexmid  4589  regexmidlem1  4599  0elsucexmid  4631  ordpwsucexmid  4636  opthprc  4744  fsn  5775  fsn2  5777  fvsn  5802  fvsnun1  5804  acexmidlema  5958  acexmidlemb  5959  acexmidlemab  5961  brtpos0  6361  mapsn  6800  mapsncnv  6805  0elixp  6839  en1  6914  djulclr  7177  djurclr  7178  djulcl  7179  djurcl  7180  djuf1olem  7181  exmidonfinlem  7332  elreal2  7978  1exp  10750  hashinfuni  10959  wrdexb  11043  0bits  12385  ennnfonelemhom  12901  dvef  15314  djucllem  15936  bj-d0clsepcl  16060
  Copyright terms: Public domain W3C validator