ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snid Unicode version

Theorem snid 3653
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
snid.1  |-  A  e. 
_V
Assertion
Ref Expression
snid  |-  A  e. 
{ A }

Proof of Theorem snid
StepHypRef Expression
1 snid.1 . 2  |-  A  e. 
_V
2 snidb 3652 . 2  |-  ( A  e.  _V  <->  A  e.  { A } )
31, 2mpbi 145 1  |-  A  e. 
{ A }
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3628
This theorem is referenced by:  vsnid  3654  exsnrex  3664  rabsnt  3697  sneqr  3790  undifexmid  4226  exmidexmid  4229  ss1o0el1  4230  exmidundif  4239  exmidundifim  4240  exmid1stab  4241  unipw  4250  intid  4257  ordtriexmidlem2  4556  ordtriexmid  4557  ontriexmidim  4558  ordtri2orexmid  4559  regexmidlem1  4569  0elsucexmid  4601  ordpwsucexmid  4606  opthprc  4714  fsn  5734  fsn2  5736  fvsn  5757  fvsnun1  5759  acexmidlema  5913  acexmidlemb  5914  acexmidlemab  5916  brtpos0  6310  mapsn  6749  mapsncnv  6754  0elixp  6788  en1  6858  djulclr  7115  djurclr  7116  djulcl  7117  djurcl  7118  djuf1olem  7119  exmidonfinlem  7260  elreal2  7897  1exp  10660  hashinfuni  10869  wrdexb  10947  ennnfonelemhom  12632  dvef  14963  djucllem  15446  bj-d0clsepcl  15571
  Copyright terms: Public domain W3C validator