ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snid Unicode version

Theorem snid 3625
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
snid.1  |-  A  e. 
_V
Assertion
Ref Expression
snid  |-  A  e. 
{ A }

Proof of Theorem snid
StepHypRef Expression
1 snid.1 . 2  |-  A  e. 
_V
2 snidb 3624 . 2  |-  ( A  e.  _V  <->  A  e.  { A } )
31, 2mpbi 145 1  |-  A  e. 
{ A }
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sn 3600
This theorem is referenced by:  vsnid  3626  exsnrex  3636  rabsnt  3669  sneqr  3762  undifexmid  4195  exmidexmid  4198  ss1o0el1  4199  exmidundif  4208  exmidundifim  4209  exmid1stab  4210  unipw  4219  intid  4226  ordtriexmidlem2  4521  ordtriexmid  4522  ontriexmidim  4523  ordtri2orexmid  4524  regexmidlem1  4534  0elsucexmid  4566  ordpwsucexmid  4571  opthprc  4679  fsn  5690  fsn2  5692  fvsn  5713  fvsnun1  5715  acexmidlema  5868  acexmidlemb  5869  acexmidlemab  5871  brtpos0  6255  mapsn  6692  mapsncnv  6697  0elixp  6731  en1  6801  djulclr  7050  djurclr  7051  djulcl  7052  djurcl  7053  djuf1olem  7054  exmidonfinlem  7194  elreal2  7831  1exp  10551  hashinfuni  10759  ennnfonelemhom  12418  dvef  14273  djucllem  14637  bj-d0clsepcl  14762
  Copyright terms: Public domain W3C validator