![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snid | Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snid |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snidb 3649 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3625 |
This theorem is referenced by: vsnid 3651 exsnrex 3661 rabsnt 3694 sneqr 3787 undifexmid 4223 exmidexmid 4226 ss1o0el1 4227 exmidundif 4236 exmidundifim 4237 exmid1stab 4238 unipw 4247 intid 4254 ordtriexmidlem2 4553 ordtriexmid 4554 ontriexmidim 4555 ordtri2orexmid 4556 regexmidlem1 4566 0elsucexmid 4598 ordpwsucexmid 4603 opthprc 4711 fsn 5731 fsn2 5733 fvsn 5754 fvsnun1 5756 acexmidlema 5910 acexmidlemb 5911 acexmidlemab 5913 brtpos0 6307 mapsn 6746 mapsncnv 6751 0elixp 6785 en1 6855 djulclr 7110 djurclr 7111 djulcl 7112 djurcl 7113 djuf1olem 7114 exmidonfinlem 7255 elreal2 7892 1exp 10642 hashinfuni 10851 wrdexb 10929 ennnfonelemhom 12575 dvef 14906 djucllem 15362 bj-d0clsepcl 15487 |
Copyright terms: Public domain | W3C validator |