| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snid | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| snid.1 | 
 | 
| Ref | Expression | 
|---|---|
| snid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snid.1 | 
. 2
 | |
| 2 | snidb 3652 | 
. 2
 | |
| 3 | 1, 2 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 | 
| This theorem is referenced by: vsnid 3654 exsnrex 3664 rabsnt 3697 sneqr 3790 undifexmid 4226 exmidexmid 4229 ss1o0el1 4230 exmidundif 4239 exmidundifim 4240 exmid1stab 4241 unipw 4250 intid 4257 ordtriexmidlem2 4556 ordtriexmid 4557 ontriexmidim 4558 ordtri2orexmid 4559 regexmidlem1 4569 0elsucexmid 4601 ordpwsucexmid 4606 opthprc 4714 fsn 5734 fsn2 5736 fvsn 5757 fvsnun1 5759 acexmidlema 5913 acexmidlemb 5914 acexmidlemab 5916 brtpos0 6310 mapsn 6749 mapsncnv 6754 0elixp 6788 en1 6858 djulclr 7115 djurclr 7116 djulcl 7117 djurcl 7118 djuf1olem 7119 exmidonfinlem 7260 elreal2 7897 1exp 10660 hashinfuni 10869 wrdexb 10947 ennnfonelemhom 12632 dvef 14963 djucllem 15446 bj-d0clsepcl 15571 | 
| Copyright terms: Public domain | W3C validator |