| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. 2
| |
| 2 | elsng 3658 |
. 2
| |
| 3 | 1, 2 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sn 3649 |
| This theorem is referenced by: snidb 3673 elsn2g 3676 snnzg 3760 snmg 3761 exmidsssnc 4263 fvunsng 5801 fsnunfv 5808 1stconst 6330 2ndconst 6331 tfr0dm 6431 tfrlemibxssdm 6436 tfrlemi14d 6442 tfr1onlembxssdm 6452 tfr1onlemres 6458 tfrcllembxssdm 6465 tfrcllemres 6471 en1uniel 6919 onunsnss 7040 snon0 7063 supsnti 7133 fseq1p1m1 10251 elfzomin 10372 swrds1 11159 fsumsplitsnun 11845 divalgmod 12353 setsslid 12998 1strbas 13064 srnginvld 13097 lmodvscad 13115 mgm1 13317 mnd1id 13403 0subm 13431 cnpdis 14829 upgr1edc 15829 bj-sels 16049 |
| Copyright terms: Public domain | W3C validator |