| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | elsng 3681 |
. 2
| |
| 3 | 1, 2 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: snidb 3696 elsn2g 3699 snnzg 3783 snmg 3784 exmidsssnc 4286 fvunsng 5832 fsnunfv 5839 1stconst 6365 2ndconst 6366 tfr0dm 6466 tfrlemibxssdm 6471 tfrlemi14d 6477 tfr1onlembxssdm 6487 tfr1onlemres 6493 tfrcllembxssdm 6500 tfrcllemres 6506 en1uniel 6954 onunsnss 7075 snon0 7098 supsnti 7168 fseq1p1m1 10286 elfzomin 10407 swrds1 11195 fsumsplitsnun 11925 divalgmod 12433 setsslid 13078 bassetsnn 13084 1strbas 13145 srnginvld 13178 lmodvscad 13196 mgm1 13398 mnd1id 13484 0subm 13512 cnpdis 14910 upgr1edc 15915 bj-sels 16235 |
| Copyright terms: Public domain | W3C validator |