| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. 2
| |
| 2 | elsng 3638 |
. 2
| |
| 3 | 1, 2 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: snidb 3653 elsn2g 3656 snnzg 3740 snmg 3741 exmidsssnc 4237 fvunsng 5759 fsnunfv 5766 1stconst 6288 2ndconst 6289 tfr0dm 6389 tfrlemibxssdm 6394 tfrlemi14d 6400 tfr1onlembxssdm 6410 tfr1onlemres 6416 tfrcllembxssdm 6423 tfrcllemres 6429 en1uniel 6872 onunsnss 6987 snon0 7010 supsnti 7080 fseq1p1m1 10186 elfzomin 10299 fsumsplitsnun 11601 divalgmod 12109 setsslid 12754 1strbas 12820 srnginvld 12852 lmodvscad 12870 mgm1 13072 mnd1id 13158 0subm 13186 cnpdis 14562 bj-sels 15644 |
| Copyright terms: Public domain | W3C validator |