![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snidg | Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
snidg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
2 | elsng 3633 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbiri 168 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 |
This theorem is referenced by: snidb 3648 elsn2g 3651 snnzg 3735 snmg 3736 exmidsssnc 4232 fvunsng 5752 fsnunfv 5759 1stconst 6274 2ndconst 6275 tfr0dm 6375 tfrlemibxssdm 6380 tfrlemi14d 6386 tfr1onlembxssdm 6396 tfr1onlemres 6402 tfrcllembxssdm 6409 tfrcllemres 6415 en1uniel 6858 onunsnss 6973 snon0 6994 supsnti 7064 fseq1p1m1 10160 elfzomin 10273 fsumsplitsnun 11562 divalgmod 12068 setsslid 12669 1strbas 12735 srnginvld 12767 lmodvscad 12785 mgm1 12953 mnd1id 13028 0subm 13056 cnpdis 14410 bj-sels 15406 |
Copyright terms: Public domain | W3C validator |