| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. 2
| |
| 2 | elsng 3647 |
. 2
| |
| 3 | 1, 2 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sn 3638 |
| This theorem is referenced by: snidb 3662 elsn2g 3665 snnzg 3749 snmg 3750 exmidsssnc 4246 fvunsng 5777 fsnunfv 5784 1stconst 6306 2ndconst 6307 tfr0dm 6407 tfrlemibxssdm 6412 tfrlemi14d 6418 tfr1onlembxssdm 6428 tfr1onlemres 6434 tfrcllembxssdm 6441 tfrcllemres 6447 en1uniel 6895 onunsnss 7013 snon0 7036 supsnti 7106 fseq1p1m1 10215 elfzomin 10333 fsumsplitsnun 11701 divalgmod 12209 setsslid 12854 1strbas 12920 srnginvld 12953 lmodvscad 12971 mgm1 13173 mnd1id 13259 0subm 13287 cnpdis 14685 bj-sels 15812 |
| Copyright terms: Public domain | W3C validator |