![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snidg | Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
snidg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
2 | elsng 3634 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbiri 168 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3625 |
This theorem is referenced by: snidb 3649 elsn2g 3652 snnzg 3736 snmg 3737 exmidsssnc 4233 fvunsng 5753 fsnunfv 5760 1stconst 6276 2ndconst 6277 tfr0dm 6377 tfrlemibxssdm 6382 tfrlemi14d 6388 tfr1onlembxssdm 6398 tfr1onlemres 6404 tfrcllembxssdm 6411 tfrcllemres 6417 en1uniel 6860 onunsnss 6975 snon0 6996 supsnti 7066 fseq1p1m1 10163 elfzomin 10276 fsumsplitsnun 11565 divalgmod 12071 setsslid 12672 1strbas 12738 srnginvld 12770 lmodvscad 12788 mgm1 12956 mnd1id 13031 0subm 13059 cnpdis 14421 bj-sels 15476 |
Copyright terms: Public domain | W3C validator |