| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | Unicode version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. 2
| |
| 2 | elsng 3648 |
. 2
| |
| 3 | 1, 2 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: snidb 3663 elsn2g 3666 snnzg 3750 snmg 3751 exmidsssnc 4247 fvunsng 5778 fsnunfv 5785 1stconst 6307 2ndconst 6308 tfr0dm 6408 tfrlemibxssdm 6413 tfrlemi14d 6419 tfr1onlembxssdm 6429 tfr1onlemres 6435 tfrcllembxssdm 6442 tfrcllemres 6448 en1uniel 6896 onunsnss 7014 snon0 7037 supsnti 7107 fseq1p1m1 10216 elfzomin 10335 swrds1 11121 fsumsplitsnun 11730 divalgmod 12238 setsslid 12883 1strbas 12949 srnginvld 12982 lmodvscad 13000 mgm1 13202 mnd1id 13288 0subm 13316 cnpdis 14714 bj-sels 15850 |
| Copyright terms: Public domain | W3C validator |