Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snidg | Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
snidg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . 2 | |
2 | elsng 3575 | . 2 | |
3 | 1, 2 | mpbiri 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 csn 3560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sn 3566 |
This theorem is referenced by: snidb 3590 elsn2g 3593 snnzg 3676 snmg 3677 exmidsssnc 4164 fvunsng 5660 fsnunfv 5667 1stconst 6165 2ndconst 6166 tfr0dm 6266 tfrlemibxssdm 6271 tfrlemi14d 6277 tfr1onlembxssdm 6287 tfr1onlemres 6293 tfrcllembxssdm 6300 tfrcllemres 6306 en1uniel 6746 onunsnss 6858 snon0 6877 supsnti 6945 fseq1p1m1 9989 elfzomin 10098 fsumsplitsnun 11309 divalgmod 11810 setsslid 12211 1strbas 12260 srnginvld 12287 lmodvscad 12298 cnpdis 12613 bj-sels 13460 |
Copyright terms: Public domain | W3C validator |