ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifd Unicode version

Theorem ssdifd 3317
Description: If  A is contained in  B, then  ( A  \  C ) is contained in  ( B  \  C ). Deduction form of ssdif 3316. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ssdifd  |-  ( ph  ->  ( A  \  C
)  C_  ( B  \  C ) )

Proof of Theorem ssdifd
StepHypRef Expression
1 ssdifd.1 . 2  |-  ( ph  ->  A  C_  B )
2 ssdif 3316 . 2  |-  ( A 
C_  B  ->  ( A  \  C )  C_  ( B  \  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  \  C
)  C_  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3171    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187
This theorem is referenced by:  ssdif2d  3320  phplem4dom  6984  fisseneq  7057
  Copyright terms: Public domain W3C validator