ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sscond Unicode version

Theorem sscond 3264
Description: If  A is contained in  B, then  ( C  \  B ) is contained in  ( C  \  A ). Deduction form of sscon 3261. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
sscond  |-  ( ph  ->  ( C  \  B
)  C_  ( C  \  A ) )

Proof of Theorem sscond
StepHypRef Expression
1 ssdifd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sscon 3261 . 2  |-  ( A 
C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  \  B
)  C_  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3118    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134
This theorem is referenced by:  ssdif2d  3266  setsresg  12454
  Copyright terms: Public domain W3C validator