ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisseneq Unicode version

Theorem fisseneq 6820
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )

Proof of Theorem fisseneq
Dummy variables  w  x  y  z  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enfii 6768 . . . 4  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
213adant2 1000 . . 3  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  e.  Fin )
3 sseq1 3120 . . . . . . 7  |-  ( w  =  (/)  ->  ( w 
C_  x  <->  (/)  C_  x
) )
4 breq1 3932 . . . . . . 7  |-  ( w  =  (/)  ->  ( w 
~~  x  <->  (/)  ~~  x
) )
53, 4anbi12d 464 . . . . . 6  |-  ( w  =  (/)  ->  ( ( w  C_  x  /\  w  ~~  x )  <->  ( (/)  C_  x  /\  (/)  ~~  x )
) )
6 eqeq1 2146 . . . . . 6  |-  ( w  =  (/)  ->  ( w  =  x  <->  (/)  =  x ) )
75, 6imbi12d 233 . . . . 5  |-  ( w  =  (/)  ->  ( ( ( w  C_  x  /\  w  ~~  x )  ->  w  =  x )  <->  ( ( (/)  C_  x  /\  (/)  ~~  x
)  ->  (/)  =  x ) ) )
87albidv 1796 . . . 4  |-  ( w  =  (/)  ->  ( A. x ( ( w 
C_  x  /\  w  ~~  x )  ->  w  =  x )  <->  A. x
( ( (/)  C_  x  /\  (/)  ~~  x )  -> 
(/)  =  x ) ) )
9 sseq1 3120 . . . . . . 7  |-  ( w  =  y  ->  (
w  C_  x  <->  y  C_  x ) )
10 breq1 3932 . . . . . . 7  |-  ( w  =  y  ->  (
w  ~~  x  <->  y  ~~  x ) )
119, 10anbi12d 464 . . . . . 6  |-  ( w  =  y  ->  (
( w  C_  x  /\  w  ~~  x )  <-> 
( y  C_  x  /\  y  ~~  x ) ) )
12 eqeq1 2146 . . . . . 6  |-  ( w  =  y  ->  (
w  =  x  <->  y  =  x ) )
1311, 12imbi12d 233 . . . . 5  |-  ( w  =  y  ->  (
( ( w  C_  x  /\  w  ~~  x
)  ->  w  =  x )  <->  ( (
y  C_  x  /\  y  ~~  x )  -> 
y  =  x ) ) )
1413albidv 1796 . . . 4  |-  ( w  =  y  ->  ( A. x ( ( w 
C_  x  /\  w  ~~  x )  ->  w  =  x )  <->  A. x
( ( y  C_  x  /\  y  ~~  x
)  ->  y  =  x ) ) )
15 sseq1 3120 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  x 
<->  ( y  u.  {
z } )  C_  x ) )
16 breq1 3932 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  ~~  x 
<->  ( y  u.  {
z } )  ~~  x ) )
1715, 16anbi12d 464 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( w 
C_  x  /\  w  ~~  x )  <->  ( (
y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) ) )
18 eqeq1 2146 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  =  x  <->  ( y  u. 
{ z } )  =  x ) )
1917, 18imbi12d 233 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( w  C_  x  /\  w  ~~  x )  ->  w  =  x )  <->  ( ( ( y  u. 
{ z } ) 
C_  x  /\  (
y  u.  { z } )  ~~  x
)  ->  ( y  u.  { z } )  =  x ) ) )
2019albidv 1796 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A. x
( ( w  C_  x  /\  w  ~~  x
)  ->  w  =  x )  <->  A. x
( ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x )  ->  (
y  u.  { z } )  =  x ) ) )
21 sseq1 3120 . . . . . . 7  |-  ( w  =  A  ->  (
w  C_  x  <->  A  C_  x
) )
22 breq1 3932 . . . . . . 7  |-  ( w  =  A  ->  (
w  ~~  x  <->  A  ~~  x ) )
2321, 22anbi12d 464 . . . . . 6  |-  ( w  =  A  ->  (
( w  C_  x  /\  w  ~~  x )  <-> 
( A  C_  x  /\  A  ~~  x ) ) )
24 eqeq1 2146 . . . . . 6  |-  ( w  =  A  ->  (
w  =  x  <->  A  =  x ) )
2523, 24imbi12d 233 . . . . 5  |-  ( w  =  A  ->  (
( ( w  C_  x  /\  w  ~~  x
)  ->  w  =  x )  <->  ( ( A  C_  x  /\  A  ~~  x )  ->  A  =  x ) ) )
2625albidv 1796 . . . 4  |-  ( w  =  A  ->  ( A. x ( ( w 
C_  x  /\  w  ~~  x )  ->  w  =  x )  <->  A. x
( ( A  C_  x  /\  A  ~~  x
)  ->  A  =  x ) ) )
27 ensym 6675 . . . . . . . 8  |-  ( (/)  ~~  x  ->  x  ~~  (/) )
28 en0 6689 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
2927, 28sylib 121 . . . . . . 7  |-  ( (/)  ~~  x  ->  x  =  (/) )
3029eqcomd 2145 . . . . . 6  |-  ( (/)  ~~  x  ->  (/)  =  x )
3130adantl 275 . . . . 5  |-  ( (
(/)  C_  x  /\  (/)  ~~  x
)  ->  (/)  =  x )
3231ax-gen 1425 . . . 4  |-  A. x
( ( (/)  C_  x  /\  (/)  ~~  x )  -> 
(/)  =  x )
33 sseq2 3121 . . . . . . . 8  |-  ( x  =  a  ->  (
y  C_  x  <->  y  C_  a ) )
34 breq2 3933 . . . . . . . 8  |-  ( x  =  a  ->  (
y  ~~  x  <->  y  ~~  a ) )
3533, 34anbi12d 464 . . . . . . 7  |-  ( x  =  a  ->  (
( y  C_  x  /\  y  ~~  x )  <-> 
( y  C_  a  /\  y  ~~  a ) ) )
36 eqeq2 2149 . . . . . . 7  |-  ( x  =  a  ->  (
y  =  x  <->  y  =  a ) )
3735, 36imbi12d 233 . . . . . 6  |-  ( x  =  a  ->  (
( ( y  C_  x  /\  y  ~~  x
)  ->  y  =  x )  <->  ( (
y  C_  a  /\  y  ~~  a )  -> 
y  =  a ) ) )
3837cbvalv 1889 . . . . 5  |-  ( A. x ( ( y 
C_  x  /\  y  ~~  x )  ->  y  =  x )  <->  A. a
( ( y  C_  a  /\  y  ~~  a
)  ->  y  =  a ) )
39 simplr 519 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  ->  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )
40 difun2 3442 . . . . . . . . . . . . . 14  |-  ( ( y  u.  { z } )  \  {
z } )  =  ( y  \  {
z } )
41 difsn 3657 . . . . . . . . . . . . . . 15  |-  ( -.  z  e.  y  -> 
( y  \  {
z } )  =  y )
4241ad3antlr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( y  \  {
z } )  =  y )
4340, 42syl5eq 2184 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( ( y  u. 
{ z } ) 
\  { z } )  =  y )
44 simprl 520 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( y  u.  {
z } )  C_  x )
4544ssdifd 3212 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( ( y  u. 
{ z } ) 
\  { z } )  C_  ( x  \  { z } ) )
4643, 45eqsstrrd 3134 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
y  C_  ( x  \  { z } ) )
47 simplll 522 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
y  e.  Fin )
48 vex 2689 . . . . . . . . . . . . . . . 16  |-  z  e. 
_V
4948a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
z  e.  _V )
50 simpllr 523 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  ->  -.  z  e.  y
)
51 unsnfi 6807 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  Fin  /\  z  e.  _V  /\  -.  z  e.  y )  ->  ( y  u.  {
z } )  e. 
Fin )
5247, 49, 50, 51syl3anc 1216 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( y  u.  {
z } )  e. 
Fin )
53 simprr 521 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( y  u.  {
z } )  ~~  x )
54 vsnid 3557 . . . . . . . . . . . . . . . 16  |-  z  e. 
{ z }
55 elun2 3244 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { z }  ->  z  e.  ( y  u.  { z } ) )
5654, 55ax-mp 5 . . . . . . . . . . . . . . 15  |-  z  e.  ( y  u.  {
z } )
5756a1i 9 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
z  e.  ( y  u.  { z } ) )
5844, 57sseldd 3098 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
z  e.  x )
5952, 53, 57, 58dif1enen 6774 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( ( y  u. 
{ z } ) 
\  { z } )  ~~  ( x 
\  { z } ) )
6043, 59eqbrtrrd 3952 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
y  ~~  ( x  \  { z } ) )
6146, 60jca 304 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( y  C_  (
x  \  { z } )  /\  y  ~~  ( x  \  {
z } ) ) )
62 vex 2689 . . . . . . . . . . . . 13  |-  x  e. 
_V
63 difexg 4069 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (
x  \  { z } )  e.  _V )
6462, 63ax-mp 5 . . . . . . . . . . . 12  |-  ( x 
\  { z } )  e.  _V
65 sseq2 3121 . . . . . . . . . . . . . 14  |-  ( a  =  ( x  \  { z } )  ->  ( y  C_  a 
<->  y  C_  ( x  \  { z } ) ) )
66 breq2 3933 . . . . . . . . . . . . . 14  |-  ( a  =  ( x  \  { z } )  ->  ( y  ~~  a 
<->  y  ~~  ( x 
\  { z } ) ) )
6765, 66anbi12d 464 . . . . . . . . . . . . 13  |-  ( a  =  ( x  \  { z } )  ->  ( ( y 
C_  a  /\  y  ~~  a )  <->  ( y  C_  ( x  \  {
z } )  /\  y  ~~  ( x  \  { z } ) ) ) )
68 eqeq2 2149 . . . . . . . . . . . . 13  |-  ( a  =  ( x  \  { z } )  ->  ( y  =  a  <->  y  =  ( x  \  { z } ) ) )
6967, 68imbi12d 233 . . . . . . . . . . . 12  |-  ( a  =  ( x  \  { z } )  ->  ( ( ( y  C_  a  /\  y  ~~  a )  -> 
y  =  a )  <-> 
( ( y  C_  ( x  \  { z } )  /\  y  ~~  ( x  \  {
z } ) )  ->  y  =  ( x  \  { z } ) ) ) )
7064, 69spcv 2779 . . . . . . . . . . 11  |-  ( A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a )  -> 
( ( y  C_  ( x  \  { z } )  /\  y  ~~  ( x  \  {
z } ) )  ->  y  =  ( x  \  { z } ) ) )
7139, 61, 70sylc 62 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
y  =  ( x 
\  { z } ) )
7271uneq1d 3229 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( y  u.  {
z } )  =  ( ( x  \  { z } )  u.  { z } ) )
7353ensymd 6677 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  ->  x  ~~  ( y  u. 
{ z } ) )
74 enfii 6768 . . . . . . . . . . 11  |-  ( ( ( y  u.  {
z } )  e. 
Fin  /\  x  ~~  ( y  u.  {
z } ) )  ->  x  e.  Fin )
7552, 73, 74syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  ->  x  e.  Fin )
76 fidifsnid 6765 . . . . . . . . . 10  |-  ( ( x  e.  Fin  /\  z  e.  x )  ->  ( ( x  \  { z } )  u.  { z } )  =  x )
7775, 58, 76syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( ( x  \  { z } )  u.  { z } )  =  x )
7872, 77eqtrd 2172 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a ) )  /\  ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x ) )  -> 
( y  u.  {
z } )  =  x )
7978ex 114 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  A. a
( ( y  C_  a  /\  y  ~~  a
)  ->  y  =  a ) )  -> 
( ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x )  ->  (
y  u.  { z } )  =  x ) )
8079alrimiv 1846 . . . . . 6  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  A. a
( ( y  C_  a  /\  y  ~~  a
)  ->  y  =  a ) )  ->  A. x ( ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x )  ->  (
y  u.  { z } )  =  x ) )
8180ex 114 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. a ( ( y 
C_  a  /\  y  ~~  a )  ->  y  =  a )  ->  A. x ( ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x )  ->  (
y  u.  { z } )  =  x ) ) )
8238, 81syl5bi 151 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( A. x ( ( y 
C_  x  /\  y  ~~  x )  ->  y  =  x )  ->  A. x
( ( ( y  u.  { z } )  C_  x  /\  ( y  u.  {
z } )  ~~  x )  ->  (
y  u.  { z } )  =  x ) ) )
838, 14, 20, 26, 32, 82findcard2s 6784 . . 3  |-  ( A  e.  Fin  ->  A. x
( ( A  C_  x  /\  A  ~~  x
)  ->  A  =  x ) )
842, 83syl 14 . 2  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A. x
( ( A  C_  x  /\  A  ~~  x
)  ->  A  =  x ) )
85 3simpc 980 . 2  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  ( A  C_  B  /\  A  ~~  B ) )
86 sseq2 3121 . . . . . 6  |-  ( x  =  B  ->  ( A  C_  x  <->  A  C_  B
) )
87 breq2 3933 . . . . . 6  |-  ( x  =  B  ->  ( A  ~~  x  <->  A  ~~  B ) )
8886, 87anbi12d 464 . . . . 5  |-  ( x  =  B  ->  (
( A  C_  x  /\  A  ~~  x )  <-> 
( A  C_  B  /\  A  ~~  B ) ) )
89 eqeq2 2149 . . . . 5  |-  ( x  =  B  ->  ( A  =  x  <->  A  =  B ) )
9088, 89imbi12d 233 . . . 4  |-  ( x  =  B  ->  (
( ( A  C_  x  /\  A  ~~  x
)  ->  A  =  x )  <->  ( ( A  C_  B  /\  A  ~~  B )  ->  A  =  B ) ) )
9190spcgv 2773 . . 3  |-  ( B  e.  Fin  ->  ( A. x ( ( A 
C_  x  /\  A  ~~  x )  ->  A  =  x )  ->  (
( A  C_  B  /\  A  ~~  B )  ->  A  =  B ) ) )
92913ad2ant1 1002 . 2  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  ( A. x ( ( A 
C_  x  /\  A  ~~  x )  ->  A  =  x )  ->  (
( A  C_  B  /\  A  ~~  B )  ->  A  =  B ) ) )
9384, 85, 92mp2d 47 1  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 962   A.wal 1329    = wceq 1331    e. wcel 1480   _Vcvv 2686    \ cdif 3068    u. cun 3069    C_ wss 3071   (/)c0 3363   {csn 3527   class class class wbr 3929    ~~ cen 6632   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  phpeqd  6821  f1finf1o  6835  en1eqsn  6836
  Copyright terms: Public domain W3C validator