ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdif2d Unicode version

Theorem ssdif2d 3289
Description: If  A is contained in  B and  C is contained in  D, then  ( A  \  D ) is contained in  ( B  \  C ). Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssdifd.1  |-  ( ph  ->  A  C_  B )
ssdif2d.2  |-  ( ph  ->  C  C_  D )
Assertion
Ref Expression
ssdif2d  |-  ( ph  ->  ( A  \  D
)  C_  ( B  \  C ) )

Proof of Theorem ssdif2d
StepHypRef Expression
1 ssdif2d.2 . . 3  |-  ( ph  ->  C  C_  D )
21sscond 3287 . 2  |-  ( ph  ->  ( A  \  D
)  C_  ( A  \  C ) )
3 ssdifd.1 . . 3  |-  ( ph  ->  A  C_  B )
43ssdifd 3286 . 2  |-  ( ph  ->  ( A  \  C
)  C_  ( B  \  C ) )
52, 4sstrd 3180 1  |-  ( ph  ->  ( A  \  D
)  C_  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3141    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator