ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdif2d Unicode version

Theorem ssdif2d 3260
Description: If  A is contained in  B and  C is contained in  D, then  ( A  \  D ) is contained in  ( B  \  C ). Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssdifd.1  |-  ( ph  ->  A  C_  B )
ssdif2d.2  |-  ( ph  ->  C  C_  D )
Assertion
Ref Expression
ssdif2d  |-  ( ph  ->  ( A  \  D
)  C_  ( B  \  C ) )

Proof of Theorem ssdif2d
StepHypRef Expression
1 ssdif2d.2 . . 3  |-  ( ph  ->  C  C_  D )
21sscond 3258 . 2  |-  ( ph  ->  ( A  \  D
)  C_  ( A  \  C ) )
3 ssdifd.1 . . 3  |-  ( ph  ->  A  C_  B )
43ssdifd 3257 . 2  |-  ( ph  ->  ( A  \  C
)  C_  ( B  \  C ) )
52, 4sstrd 3151 1  |-  ( ph  ->  ( A  \  D
)  C_  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3112    C_ wss 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-dif 3117  df-in 3121  df-ss 3128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator