ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4dom Unicode version

Theorem phplem4dom 6979
Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem4dom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )

Proof of Theorem phplem4dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 peano2 4656 . . . . . 6  |-  ( B  e.  om  ->  suc  B  e.  om )
21adantl 277 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  suc  B  e.  om )
3 brdomg 6855 . . . . 5  |-  ( suc 
B  e.  om  ->  ( suc  A  ~<_  suc  B  <->  E. f  f : suc  A
-1-1-> suc  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  <->  E. f  f : suc  A -1-1-> suc  B
) )
54biimpa 296 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  E. f 
f : suc  A -1-1-> suc 
B )
6 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
72ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  suc  B  e. 
om )
8 sssucid 4475 . . . . . . . 8  |-  A  C_  suc  A
98a1i 9 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  C_  suc  A )
10 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  om )
11 f1imaen2g 6903 . . . . . . 7  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  om )  /\  ( A  C_  suc  A  /\  A  e.  om ) )  ->  (
f " A ) 
~~  A )
126, 7, 9, 10, 11syl22anc 1251 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~~  A
)
1312ensymd 6893 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~~  ( f " A
) )
14 difexg 4196 . . . . . . 7  |-  ( suc 
B  e.  om  ->  ( suc  B  \  {
( f `  A
) } )  e. 
_V )
157, 14syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  e.  _V )
16 nnord 4673 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
17 orddif 4608 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1816, 17syl 14 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1918imaeq2d 5036 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
2010, 19syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  =  ( f " ( suc 
A  \  { A } ) ) )
21 f1fn 5500 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  ->  f  Fn  suc  A )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f  Fn  suc  A )
23 sucidg 4476 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  A  e.  suc  A )
2410, 23syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  suc  A )
25 fnsnfv 5656 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
2622, 24, 25syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  { (
f `  A ) }  =  ( f " { A } ) )
2726difeq2d 3295 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( ( f " suc  A )  \  ( f
" { A }
) ) )
28 df-f1 5290 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  <-> 
( f : suc  A --> suc  B  /\  Fun  `' f ) )
2928simprbi 275 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  Fun  `' f
)
30 imadif 5368 . . . . . . . . . . 11  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3129, 30syl 14 . . . . . . . . . 10  |-  ( f : suc  A -1-1-> suc  B  ->  ( f "
( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3231adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3327, 32eqtr4d 2242 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( f " ( suc 
A  \  { A } ) ) )
34 f1f 5498 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  f : suc  A --> suc  B )
3534adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A --> suc  B )
36 imassrn 5047 . . . . . . . . . . 11  |-  ( f
" suc  A )  C_ 
ran  f
37 frn 5449 . . . . . . . . . . 11  |-  ( f : suc  A --> suc  B  ->  ran  f  C_  suc  B )
3836, 37sstrid 3208 . . . . . . . . . 10  |-  ( f : suc  A --> suc  B  ->  ( f " suc  A )  C_  suc  B )
3935, 38syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " suc  A )  C_  suc  B )
4039ssdifd 3313 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  C_  ( suc  B  \  { ( f `  A ) } ) )
4133, 40eqsstrrd 3234 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  C_  ( suc  B 
\  { ( f `
 A ) } ) )
4220, 41eqsstrd 3233 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  C_  ( suc  B  \  { ( f `  A ) } ) )
43 ssdomg 6888 . . . . . 6  |-  ( ( suc  B  \  {
( f `  A
) } )  e. 
_V  ->  ( ( f
" A )  C_  ( suc  B  \  {
( f `  A
) } )  -> 
( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) ) )
4415, 42, 43sylc 62 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
45 endomtr 6900 . . . . 5  |-  ( ( A  ~~  ( f
" A )  /\  ( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) )  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
4613, 44, 45syl2anc 411 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
47 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  e.  om )
4835, 24ffvelcdmd 5734 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f `  A )  e.  suc  B )
49 phplem3g 6973 . . . . . 6  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5047, 48, 49syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5150ensymd 6893 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
52 domentr 6901 . . . 4  |-  ( ( A  ~<_  ( suc  B  \  { ( f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } ) 
~~  B )  ->  A  ~<_  B )
5346, 51, 52syl2anc 411 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  B )
545, 53exlimddv 1923 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  A  ~<_  B )
5554ex 115 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773    \ cdif 3167    C_ wss 3170   {csn 3638   class class class wbr 4054   Ord word 4422   suc csuc 4425   omcom 4651   `'ccnv 4687   ran crn 4689   "cima 4691   Fun wfun 5279    Fn wfn 5280   -->wf 5281   -1-1->wf1 5282   ` cfv 5285    ~~ cen 6843    ~<_ cdom 6844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-er 6638  df-en 6846  df-dom 6847
This theorem is referenced by:  php5dom  6980
  Copyright terms: Public domain W3C validator