| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4dom | Unicode version | ||
| Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem4dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4642 |
. . . . . 6
| |
| 2 | 1 | adantl 277 |
. . . . 5
|
| 3 | brdomg 6836 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | biimpa 296 |
. . 3
|
| 6 | simpr 110 |
. . . . . . 7
| |
| 7 | 2 | ad2antrr 488 |
. . . . . . 7
|
| 8 | sssucid 4461 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | simplll 533 |
. . . . . . 7
| |
| 11 | f1imaen2g 6884 |
. . . . . . 7
| |
| 12 | 6, 7, 9, 10, 11 | syl22anc 1250 |
. . . . . 6
|
| 13 | 12 | ensymd 6874 |
. . . . 5
|
| 14 | difexg 4184 |
. . . . . . 7
| |
| 15 | 7, 14 | syl 14 |
. . . . . 6
|
| 16 | nnord 4659 |
. . . . . . . . . 10
| |
| 17 | orddif 4594 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 18 | imaeq2d 5021 |
. . . . . . . 8
|
| 20 | 10, 19 | syl 14 |
. . . . . . 7
|
| 21 | f1fn 5482 |
. . . . . . . . . . . 12
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . . 11
|
| 23 | sucidg 4462 |
. . . . . . . . . . . 12
| |
| 24 | 10, 23 | syl 14 |
. . . . . . . . . . 11
|
| 25 | fnsnfv 5637 |
. . . . . . . . . . 11
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . . 10
|
| 27 | 26 | difeq2d 3290 |
. . . . . . . . 9
|
| 28 | df-f1 5275 |
. . . . . . . . . . . 12
| |
| 29 | 28 | simprbi 275 |
. . . . . . . . . . 11
|
| 30 | imadif 5353 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | adantl 277 |
. . . . . . . . 9
|
| 33 | 27, 32 | eqtr4d 2240 |
. . . . . . . 8
|
| 34 | f1f 5480 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantl 277 |
. . . . . . . . . 10
|
| 36 | imassrn 5032 |
. . . . . . . . . . 11
| |
| 37 | frn 5433 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | sstrid 3203 |
. . . . . . . . . 10
|
| 39 | 35, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 39 | ssdifd 3308 |
. . . . . . . 8
|
| 41 | 33, 40 | eqsstrrd 3229 |
. . . . . . 7
|
| 42 | 20, 41 | eqsstrd 3228 |
. . . . . 6
|
| 43 | ssdomg 6869 |
. . . . . 6
| |
| 44 | 15, 42, 43 | sylc 62 |
. . . . 5
|
| 45 | endomtr 6881 |
. . . . 5
| |
| 46 | 13, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | simpllr 534 |
. . . . . 6
| |
| 48 | 35, 24 | ffvelcdmd 5715 |
. . . . . 6
|
| 49 | phplem3g 6952 |
. . . . . 6
| |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . 5
|
| 51 | 50 | ensymd 6874 |
. . . 4
|
| 52 | domentr 6882 |
. . . 4
| |
| 53 | 46, 51, 52 | syl2anc 411 |
. . 3
|
| 54 | 5, 53 | exlimddv 1921 |
. 2
|
| 55 | 54 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-er 6619 df-en 6827 df-dom 6828 |
| This theorem is referenced by: php5dom 6959 |
| Copyright terms: Public domain | W3C validator |