ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4dom Unicode version

Theorem phplem4dom 6856
Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem4dom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )

Proof of Theorem phplem4dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 peano2 4591 . . . . . 6  |-  ( B  e.  om  ->  suc  B  e.  om )
21adantl 277 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  suc  B  e.  om )
3 brdomg 6742 . . . . 5  |-  ( suc 
B  e.  om  ->  ( suc  A  ~<_  suc  B  <->  E. f  f : suc  A
-1-1-> suc  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  <->  E. f  f : suc  A -1-1-> suc  B
) )
54biimpa 296 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  E. f 
f : suc  A -1-1-> suc 
B )
6 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
72ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  suc  B  e. 
om )
8 sssucid 4412 . . . . . . . 8  |-  A  C_  suc  A
98a1i 9 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  C_  suc  A )
10 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  om )
11 f1imaen2g 6787 . . . . . . 7  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  om )  /\  ( A  C_  suc  A  /\  A  e.  om ) )  ->  (
f " A ) 
~~  A )
126, 7, 9, 10, 11syl22anc 1239 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~~  A
)
1312ensymd 6777 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~~  ( f " A
) )
14 difexg 4141 . . . . . . 7  |-  ( suc 
B  e.  om  ->  ( suc  B  \  {
( f `  A
) } )  e. 
_V )
157, 14syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  e.  _V )
16 nnord 4608 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
17 orddif 4543 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1816, 17syl 14 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1918imaeq2d 4966 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
2010, 19syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  =  ( f " ( suc 
A  \  { A } ) ) )
21 f1fn 5419 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  ->  f  Fn  suc  A )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f  Fn  suc  A )
23 sucidg 4413 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  A  e.  suc  A )
2410, 23syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  suc  A )
25 fnsnfv 5571 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
2622, 24, 25syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  { (
f `  A ) }  =  ( f " { A } ) )
2726difeq2d 3253 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( ( f " suc  A )  \  ( f
" { A }
) ) )
28 df-f1 5217 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  <-> 
( f : suc  A --> suc  B  /\  Fun  `' f ) )
2928simprbi 275 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  Fun  `' f
)
30 imadif 5292 . . . . . . . . . . 11  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3129, 30syl 14 . . . . . . . . . 10  |-  ( f : suc  A -1-1-> suc  B  ->  ( f "
( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3231adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3327, 32eqtr4d 2213 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( f " ( suc 
A  \  { A } ) ) )
34 f1f 5417 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  f : suc  A --> suc  B )
3534adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A --> suc  B )
36 imassrn 4977 . . . . . . . . . . 11  |-  ( f
" suc  A )  C_ 
ran  f
37 frn 5370 . . . . . . . . . . 11  |-  ( f : suc  A --> suc  B  ->  ran  f  C_  suc  B )
3836, 37sstrid 3166 . . . . . . . . . 10  |-  ( f : suc  A --> suc  B  ->  ( f " suc  A )  C_  suc  B )
3935, 38syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " suc  A )  C_  suc  B )
4039ssdifd 3271 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  C_  ( suc  B  \  { ( f `  A ) } ) )
4133, 40eqsstrrd 3192 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  C_  ( suc  B 
\  { ( f `
 A ) } ) )
4220, 41eqsstrd 3191 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  C_  ( suc  B  \  { ( f `  A ) } ) )
43 ssdomg 6772 . . . . . 6  |-  ( ( suc  B  \  {
( f `  A
) } )  e. 
_V  ->  ( ( f
" A )  C_  ( suc  B  \  {
( f `  A
) } )  -> 
( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) ) )
4415, 42, 43sylc 62 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
45 endomtr 6784 . . . . 5  |-  ( ( A  ~~  ( f
" A )  /\  ( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) )  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
4613, 44, 45syl2anc 411 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
47 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  e.  om )
4835, 24ffvelcdmd 5648 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f `  A )  e.  suc  B )
49 phplem3g 6850 . . . . . 6  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5047, 48, 49syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5150ensymd 6777 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
52 domentr 6785 . . . 4  |-  ( ( A  ~<_  ( suc  B  \  { ( f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } ) 
~~  B )  ->  A  ~<_  B )
5346, 51, 52syl2anc 411 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  B )
545, 53exlimddv 1898 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  A  ~<_  B )
5554ex 115 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2737    \ cdif 3126    C_ wss 3129   {csn 3591   class class class wbr 4000   Ord word 4359   suc csuc 4362   omcom 4586   `'ccnv 4622   ran crn 4624   "cima 4626   Fun wfun 5206    Fn wfn 5207   -->wf 5208   -1-1->wf1 5209   ` cfv 5212    ~~ cen 6732    ~<_ cdom 6733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-er 6529  df-en 6735  df-dom 6736
This theorem is referenced by:  php5dom  6857
  Copyright terms: Public domain W3C validator