| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4dom | Unicode version | ||
| Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem4dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4643 |
. . . . . 6
| |
| 2 | 1 | adantl 277 |
. . . . 5
|
| 3 | brdomg 6837 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | biimpa 296 |
. . 3
|
| 6 | simpr 110 |
. . . . . . 7
| |
| 7 | 2 | ad2antrr 488 |
. . . . . . 7
|
| 8 | sssucid 4462 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | simplll 533 |
. . . . . . 7
| |
| 11 | f1imaen2g 6885 |
. . . . . . 7
| |
| 12 | 6, 7, 9, 10, 11 | syl22anc 1251 |
. . . . . 6
|
| 13 | 12 | ensymd 6875 |
. . . . 5
|
| 14 | difexg 4185 |
. . . . . . 7
| |
| 15 | 7, 14 | syl 14 |
. . . . . 6
|
| 16 | nnord 4660 |
. . . . . . . . . 10
| |
| 17 | orddif 4595 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 18 | imaeq2d 5022 |
. . . . . . . 8
|
| 20 | 10, 19 | syl 14 |
. . . . . . 7
|
| 21 | f1fn 5483 |
. . . . . . . . . . . 12
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . . 11
|
| 23 | sucidg 4463 |
. . . . . . . . . . . 12
| |
| 24 | 10, 23 | syl 14 |
. . . . . . . . . . 11
|
| 25 | fnsnfv 5638 |
. . . . . . . . . . 11
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . . 10
|
| 27 | 26 | difeq2d 3291 |
. . . . . . . . 9
|
| 28 | df-f1 5276 |
. . . . . . . . . . . 12
| |
| 29 | 28 | simprbi 275 |
. . . . . . . . . . 11
|
| 30 | imadif 5354 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | adantl 277 |
. . . . . . . . 9
|
| 33 | 27, 32 | eqtr4d 2241 |
. . . . . . . 8
|
| 34 | f1f 5481 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantl 277 |
. . . . . . . . . 10
|
| 36 | imassrn 5033 |
. . . . . . . . . . 11
| |
| 37 | frn 5434 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | sstrid 3204 |
. . . . . . . . . 10
|
| 39 | 35, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 39 | ssdifd 3309 |
. . . . . . . 8
|
| 41 | 33, 40 | eqsstrrd 3230 |
. . . . . . 7
|
| 42 | 20, 41 | eqsstrd 3229 |
. . . . . 6
|
| 43 | ssdomg 6870 |
. . . . . 6
| |
| 44 | 15, 42, 43 | sylc 62 |
. . . . 5
|
| 45 | endomtr 6882 |
. . . . 5
| |
| 46 | 13, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | simpllr 534 |
. . . . . 6
| |
| 48 | 35, 24 | ffvelcdmd 5716 |
. . . . . 6
|
| 49 | phplem3g 6953 |
. . . . . 6
| |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . 5
|
| 51 | 50 | ensymd 6875 |
. . . 4
|
| 52 | domentr 6883 |
. . . 4
| |
| 53 | 46, 51, 52 | syl2anc 411 |
. . 3
|
| 54 | 5, 53 | exlimddv 1922 |
. 2
|
| 55 | 54 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-dom 6829 |
| This theorem is referenced by: php5dom 6960 |
| Copyright terms: Public domain | W3C validator |