ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4dom Unicode version

Theorem phplem4dom 6532
Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem4dom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )

Proof of Theorem phplem4dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 peano2 4385 . . . . . 6  |-  ( B  e.  om  ->  suc  B  e.  om )
21adantl 271 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  suc  B  e.  om )
3 brdomg 6419 . . . . 5  |-  ( suc 
B  e.  om  ->  ( suc  A  ~<_  suc  B  <->  E. f  f : suc  A
-1-1-> suc  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  <->  E. f  f : suc  A -1-1-> suc  B
) )
54biimpa 290 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  E. f 
f : suc  A -1-1-> suc 
B )
6 simpr 108 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
72ad2antrr 472 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  suc  B  e. 
om )
8 sssucid 4218 . . . . . . . 8  |-  A  C_  suc  A
98a1i 9 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  C_  suc  A )
10 simplll 500 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  om )
11 f1imaen2g 6464 . . . . . . 7  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  om )  /\  ( A  C_  suc  A  /\  A  e.  om ) )  ->  (
f " A ) 
~~  A )
126, 7, 9, 10, 11syl22anc 1173 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~~  A
)
1312ensymd 6454 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~~  ( f " A
) )
14 difexg 3957 . . . . . . 7  |-  ( suc 
B  e.  om  ->  ( suc  B  \  {
( f `  A
) } )  e. 
_V )
157, 14syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  e.  _V )
16 nnord 4401 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
17 orddif 4338 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1816, 17syl 14 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1918imaeq2d 4743 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
2010, 19syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  =  ( f " ( suc 
A  \  { A } ) ) )
21 f1fn 5183 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  ->  f  Fn  suc  A )
2221adantl 271 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f  Fn  suc  A )
23 sucidg 4219 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  A  e.  suc  A )
2410, 23syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  suc  A )
25 fnsnfv 5328 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
2622, 24, 25syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  { (
f `  A ) }  =  ( f " { A } ) )
2726difeq2d 3107 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( ( f " suc  A )  \  ( f
" { A }
) ) )
28 df-f1 4988 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  <-> 
( f : suc  A --> suc  B  /\  Fun  `' f ) )
2928simprbi 269 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  Fun  `' f
)
30 imadif 5061 . . . . . . . . . . 11  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3129, 30syl 14 . . . . . . . . . 10  |-  ( f : suc  A -1-1-> suc  B  ->  ( f "
( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3231adantl 271 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3327, 32eqtr4d 2120 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( f " ( suc 
A  \  { A } ) ) )
34 f1f 5181 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  f : suc  A --> suc  B )
3534adantl 271 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A --> suc  B )
36 imassrn 4754 . . . . . . . . . . 11  |-  ( f
" suc  A )  C_ 
ran  f
37 frn 5136 . . . . . . . . . . 11  |-  ( f : suc  A --> suc  B  ->  ran  f  C_  suc  B )
3836, 37syl5ss 3025 . . . . . . . . . 10  |-  ( f : suc  A --> suc  B  ->  ( f " suc  A )  C_  suc  B )
3935, 38syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " suc  A )  C_  suc  B )
4039ssdifd 3125 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  C_  ( suc  B  \  { ( f `  A ) } ) )
4133, 40eqsstr3d 3050 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  C_  ( suc  B 
\  { ( f `
 A ) } ) )
4220, 41eqsstrd 3049 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  C_  ( suc  B  \  { ( f `  A ) } ) )
43 ssdomg 6449 . . . . . 6  |-  ( ( suc  B  \  {
( f `  A
) } )  e. 
_V  ->  ( ( f
" A )  C_  ( suc  B  \  {
( f `  A
) } )  -> 
( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) ) )
4415, 42, 43sylc 61 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
45 endomtr 6461 . . . . 5  |-  ( ( A  ~~  ( f
" A )  /\  ( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) )  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
4613, 44, 45syl2anc 403 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
47 simpllr 501 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  e.  om )
4835, 24ffvelrnd 5400 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f `  A )  e.  suc  B )
49 phplem3g 6526 . . . . . 6  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5047, 48, 49syl2anc 403 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5150ensymd 6454 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
52 domentr 6462 . . . 4  |-  ( ( A  ~<_  ( suc  B  \  { ( f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } ) 
~~  B )  ->  A  ~<_  B )
5346, 51, 52syl2anc 403 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  B )
545, 53exlimddv 1823 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  A  ~<_  B )
5554ex 113 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1287   E.wex 1424    e. wcel 1436   _Vcvv 2615    \ cdif 2985    C_ wss 2988   {csn 3431   class class class wbr 3822   Ord word 4165   suc csuc 4168   omcom 4380   `'ccnv 4412   ran crn 4414   "cima 4416   Fun wfun 4977    Fn wfn 4978   -->wf 4979   -1-1->wf1 4980   ` cfv 4983    ~~ cen 6409    ~<_ cdom 6410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-er 6246  df-en 6412  df-dom 6413
This theorem is referenced by:  php5dom  6533
  Copyright terms: Public domain W3C validator