| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4dom | Unicode version | ||
| Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem4dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4656 |
. . . . . 6
| |
| 2 | 1 | adantl 277 |
. . . . 5
|
| 3 | brdomg 6855 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | biimpa 296 |
. . 3
|
| 6 | simpr 110 |
. . . . . . 7
| |
| 7 | 2 | ad2antrr 488 |
. . . . . . 7
|
| 8 | sssucid 4475 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | simplll 533 |
. . . . . . 7
| |
| 11 | f1imaen2g 6903 |
. . . . . . 7
| |
| 12 | 6, 7, 9, 10, 11 | syl22anc 1251 |
. . . . . 6
|
| 13 | 12 | ensymd 6893 |
. . . . 5
|
| 14 | difexg 4196 |
. . . . . . 7
| |
| 15 | 7, 14 | syl 14 |
. . . . . 6
|
| 16 | nnord 4673 |
. . . . . . . . . 10
| |
| 17 | orddif 4608 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 18 | imaeq2d 5036 |
. . . . . . . 8
|
| 20 | 10, 19 | syl 14 |
. . . . . . 7
|
| 21 | f1fn 5500 |
. . . . . . . . . . . 12
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . . 11
|
| 23 | sucidg 4476 |
. . . . . . . . . . . 12
| |
| 24 | 10, 23 | syl 14 |
. . . . . . . . . . 11
|
| 25 | fnsnfv 5656 |
. . . . . . . . . . 11
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . . 10
|
| 27 | 26 | difeq2d 3295 |
. . . . . . . . 9
|
| 28 | df-f1 5290 |
. . . . . . . . . . . 12
| |
| 29 | 28 | simprbi 275 |
. . . . . . . . . . 11
|
| 30 | imadif 5368 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | adantl 277 |
. . . . . . . . 9
|
| 33 | 27, 32 | eqtr4d 2242 |
. . . . . . . 8
|
| 34 | f1f 5498 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantl 277 |
. . . . . . . . . 10
|
| 36 | imassrn 5047 |
. . . . . . . . . . 11
| |
| 37 | frn 5449 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | sstrid 3208 |
. . . . . . . . . 10
|
| 39 | 35, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 39 | ssdifd 3313 |
. . . . . . . 8
|
| 41 | 33, 40 | eqsstrrd 3234 |
. . . . . . 7
|
| 42 | 20, 41 | eqsstrd 3233 |
. . . . . 6
|
| 43 | ssdomg 6888 |
. . . . . 6
| |
| 44 | 15, 42, 43 | sylc 62 |
. . . . 5
|
| 45 | endomtr 6900 |
. . . . 5
| |
| 46 | 13, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | simpllr 534 |
. . . . . 6
| |
| 48 | 35, 24 | ffvelcdmd 5734 |
. . . . . 6
|
| 49 | phplem3g 6973 |
. . . . . 6
| |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . 5
|
| 51 | 50 | ensymd 6893 |
. . . 4
|
| 52 | domentr 6901 |
. . . 4
| |
| 53 | 46, 51, 52 | syl2anc 411 |
. . 3
|
| 54 | 5, 53 | exlimddv 1923 |
. 2
|
| 55 | 54 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-er 6638 df-en 6846 df-dom 6847 |
| This theorem is referenced by: php5dom 6980 |
| Copyright terms: Public domain | W3C validator |