| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4dom | Unicode version | ||
| Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem4dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4686 |
. . . . . 6
| |
| 2 | 1 | adantl 277 |
. . . . 5
|
| 3 | brdomg 6895 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | biimpa 296 |
. . 3
|
| 6 | simpr 110 |
. . . . . . 7
| |
| 7 | 2 | ad2antrr 488 |
. . . . . . 7
|
| 8 | sssucid 4505 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | simplll 533 |
. . . . . . 7
| |
| 11 | f1imaen2g 6943 |
. . . . . . 7
| |
| 12 | 6, 7, 9, 10, 11 | syl22anc 1272 |
. . . . . 6
|
| 13 | 12 | ensymd 6933 |
. . . . 5
|
| 14 | difexg 4224 |
. . . . . . 7
| |
| 15 | 7, 14 | syl 14 |
. . . . . 6
|
| 16 | nnord 4703 |
. . . . . . . . . 10
| |
| 17 | orddif 4638 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 18 | imaeq2d 5067 |
. . . . . . . 8
|
| 20 | 10, 19 | syl 14 |
. . . . . . 7
|
| 21 | f1fn 5532 |
. . . . . . . . . . . 12
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . . 11
|
| 23 | sucidg 4506 |
. . . . . . . . . . . 12
| |
| 24 | 10, 23 | syl 14 |
. . . . . . . . . . 11
|
| 25 | fnsnfv 5692 |
. . . . . . . . . . 11
| |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . . 10
|
| 27 | 26 | difeq2d 3322 |
. . . . . . . . 9
|
| 28 | df-f1 5322 |
. . . . . . . . . . . 12
| |
| 29 | 28 | simprbi 275 |
. . . . . . . . . . 11
|
| 30 | imadif 5400 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | adantl 277 |
. . . . . . . . 9
|
| 33 | 27, 32 | eqtr4d 2265 |
. . . . . . . 8
|
| 34 | f1f 5530 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantl 277 |
. . . . . . . . . 10
|
| 36 | imassrn 5078 |
. . . . . . . . . . 11
| |
| 37 | frn 5481 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | sstrid 3235 |
. . . . . . . . . 10
|
| 39 | 35, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 39 | ssdifd 3340 |
. . . . . . . 8
|
| 41 | 33, 40 | eqsstrrd 3261 |
. . . . . . 7
|
| 42 | 20, 41 | eqsstrd 3260 |
. . . . . 6
|
| 43 | ssdomg 6928 |
. . . . . 6
| |
| 44 | 15, 42, 43 | sylc 62 |
. . . . 5
|
| 45 | endomtr 6940 |
. . . . 5
| |
| 46 | 13, 44, 45 | syl2anc 411 |
. . . 4
|
| 47 | simpllr 534 |
. . . . . 6
| |
| 48 | 35, 24 | ffvelcdmd 5770 |
. . . . . 6
|
| 49 | phplem3g 7013 |
. . . . . 6
| |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . 5
|
| 51 | 50 | ensymd 6933 |
. . . 4
|
| 52 | domentr 6941 |
. . . 4
| |
| 53 | 46, 51, 52 | syl2anc 411 |
. . 3
|
| 54 | 5, 53 | exlimddv 1945 |
. 2
|
| 55 | 54 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-er 6678 df-en 6886 df-dom 6887 |
| This theorem is referenced by: php5dom 7020 |
| Copyright terms: Public domain | W3C validator |