ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4dom Unicode version

Theorem phplem4dom 6852
Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem4dom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )

Proof of Theorem phplem4dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 peano2 4588 . . . . . 6  |-  ( B  e.  om  ->  suc  B  e.  om )
21adantl 277 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  suc  B  e.  om )
3 brdomg 6738 . . . . 5  |-  ( suc 
B  e.  om  ->  ( suc  A  ~<_  suc  B  <->  E. f  f : suc  A
-1-1-> suc  B ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  <->  E. f  f : suc  A -1-1-> suc  B
) )
54biimpa 296 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  E. f 
f : suc  A -1-1-> suc 
B )
6 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
72ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  suc  B  e. 
om )
8 sssucid 4409 . . . . . . . 8  |-  A  C_  suc  A
98a1i 9 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  C_  suc  A )
10 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  om )
11 f1imaen2g 6783 . . . . . . 7  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  om )  /\  ( A  C_  suc  A  /\  A  e.  om ) )  ->  (
f " A ) 
~~  A )
126, 7, 9, 10, 11syl22anc 1239 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~~  A
)
1312ensymd 6773 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~~  ( f " A
) )
14 difexg 4139 . . . . . . 7  |-  ( suc 
B  e.  om  ->  ( suc  B  \  {
( f `  A
) } )  e. 
_V )
157, 14syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  e.  _V )
16 nnord 4605 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
17 orddif 4540 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1816, 17syl 14 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1918imaeq2d 4963 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
2010, 19syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  =  ( f " ( suc 
A  \  { A } ) ) )
21 f1fn 5415 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  ->  f  Fn  suc  A )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f  Fn  suc  A )
23 sucidg 4410 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  A  e.  suc  A )
2410, 23syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  e.  suc  A )
25 fnsnfv 5567 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
2622, 24, 25syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  { (
f `  A ) }  =  ( f " { A } ) )
2726difeq2d 3251 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( ( f " suc  A )  \  ( f
" { A }
) ) )
28 df-f1 5213 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-> suc  B  <-> 
( f : suc  A --> suc  B  /\  Fun  `' f ) )
2928simprbi 275 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  Fun  `' f
)
30 imadif 5288 . . . . . . . . . . 11  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3129, 30syl 14 . . . . . . . . . 10  |-  ( f : suc  A -1-1-> suc  B  ->  ( f "
( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3231adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3327, 32eqtr4d 2211 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  =  ( f " ( suc 
A  \  { A } ) ) )
34 f1f 5413 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-> suc  B  ->  f : suc  A --> suc  B )
3534adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  f : suc  A --> suc  B )
36 imassrn 4974 . . . . . . . . . . 11  |-  ( f
" suc  A )  C_ 
ran  f
37 frn 5366 . . . . . . . . . . 11  |-  ( f : suc  A --> suc  B  ->  ran  f  C_  suc  B )
3836, 37sstrid 3164 . . . . . . . . . 10  |-  ( f : suc  A --> suc  B  ->  ( f " suc  A )  C_  suc  B )
3935, 38syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " suc  A )  C_  suc  B )
4039ssdifd 3269 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( (
f " suc  A
)  \  { (
f `  A ) } )  C_  ( suc  B  \  { ( f `  A ) } ) )
4133, 40eqsstrrd 3190 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " ( suc  A  \  { A } ) )  C_  ( suc  B 
\  { ( f `
 A ) } ) )
4220, 41eqsstrd 3189 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  C_  ( suc  B  \  { ( f `  A ) } ) )
43 ssdomg 6768 . . . . . 6  |-  ( ( suc  B  \  {
( f `  A
) } )  e. 
_V  ->  ( ( f
" A )  C_  ( suc  B  \  {
( f `  A
) } )  -> 
( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) ) )
4415, 42, 43sylc 62 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f " A )  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
45 endomtr 6780 . . . . 5  |-  ( ( A  ~~  ( f
" A )  /\  ( f " A
)  ~<_  ( suc  B  \  { ( f `  A ) } ) )  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
4613, 44, 45syl2anc 411 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  ( suc 
B  \  { (
f `  A ) } ) )
47 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  e.  om )
4835, 24ffvelcdmd 5644 . . . . . 6  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( f `  A )  e.  suc  B )
49 phplem3g 6846 . . . . . 6  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5047, 48, 49syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
5150ensymd 6773 . . . 4  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
52 domentr 6781 . . . 4  |-  ( ( A  ~<_  ( suc  B  \  { ( f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } ) 
~~  B )  ->  A  ~<_  B )
5346, 51, 52syl2anc 411 . . 3  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B )  /\  f : suc  A -1-1-> suc  B
)  ->  A  ~<_  B )
545, 53exlimddv 1896 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  A  ~<_  suc  B
)  ->  A  ~<_  B )
5554ex 115 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~<_  suc 
B  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146   _Vcvv 2735    \ cdif 3124    C_ wss 3127   {csn 3589   class class class wbr 3998   Ord word 4356   suc csuc 4359   omcom 4583   `'ccnv 4619   ran crn 4621   "cima 4623   Fun wfun 5202    Fn wfn 5203   -->wf 5204   -1-1->wf1 5205   ` cfv 5208    ~~ cen 6728    ~<_ cdom 6729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-er 6525  df-en 6731  df-dom 6732
This theorem is referenced by:  php5dom  6853
  Copyright terms: Public domain W3C validator