ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiin Unicode version

Theorem ssiin 3923
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
ssiin  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssiin
StepHypRef Expression
1 nfcv 2312 . 2  |-  F/_ x C
21ssiinf 3922 1  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wral 2448    C_ wss 3121   |^|_ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-iin 3876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator