ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiinf Unicode version

Theorem ssiinf 3977
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
ssiinf.1  |-  F/_ x C
Assertion
Ref Expression
ssiinf  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )

Proof of Theorem ssiinf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . 5  |-  y  e. 
_V
2 eliin 3932 . . . . 5  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  y  e.  B ) )
31, 2ax-mp 5 . . . 4  |-  ( y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  y  e.  B )
43ralbii 2512 . . 3  |-  ( A. y  e.  C  y  e.  |^|_ x  e.  A  B 
<-> 
A. y  e.  C  A. x  e.  A  y  e.  B )
5 ssiinf.1 . . . 4  |-  F/_ x C
6 nfcv 2348 . . . 4  |-  F/_ y A
75, 6ralcomf 2667 . . 3  |-  ( A. y  e.  C  A. x  e.  A  y  e.  B  <->  A. x  e.  A  A. y  e.  C  y  e.  B )
84, 7bitri 184 . 2  |-  ( A. y  e.  C  y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  A. y  e.  C  y  e.  B )
9 dfss3 3182 . 2  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. y  e.  C  y  e.  |^|_ x  e.  A  B )
10 dfss3 3182 . . 3  |-  ( C 
C_  B  <->  A. y  e.  C  y  e.  B )
1110ralbii 2512 . 2  |-  ( A. x  e.  A  C  C_  B  <->  A. x  e.  A  A. y  e.  C  y  e.  B )
128, 9, 113bitr4i 212 1  |-  ( C 
C_  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  C  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176   F/_wnfc 2335   A.wral 2484   _Vcvv 2772    C_ wss 3166   |^|_ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-iin 3930
This theorem is referenced by:  ssiin  3978  dmiin  4924
  Copyright terms: Public domain W3C validator