Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ntrin | Unicode version |
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
clscld.1 |
Ref | Expression |
---|---|
ntrin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3347 | . . . . 5 | |
2 | clscld.1 | . . . . . 6 | |
3 | 2 | ntrss 12913 | . . . . 5 |
4 | 1, 3 | mp3an3 1321 | . . . 4 |
5 | 4 | 3adant3 1012 | . . 3 |
6 | inss2 3348 | . . . . 5 | |
7 | 2 | ntrss 12913 | . . . . 5 |
8 | 6, 7 | mp3an3 1321 | . . . 4 |
9 | 8 | 3adant2 1011 | . . 3 |
10 | 5, 9 | ssind 3351 | . 2 |
11 | simp1 992 | . . 3 | |
12 | ssinss1 3356 | . . . 4 | |
13 | 12 | 3ad2ant2 1014 | . . 3 |
14 | 2 | ntropn 12911 | . . . . 5 |
15 | 14 | 3adant3 1012 | . . . 4 |
16 | 2 | ntropn 12911 | . . . . 5 |
17 | 16 | 3adant2 1011 | . . . 4 |
18 | inopn 12795 | . . . 4 | |
19 | 11, 15, 17, 18 | syl3anc 1233 | . . 3 |
20 | inss1 3347 | . . . . 5 | |
21 | 2 | ntrss2 12915 | . . . . . 6 |
22 | 21 | 3adant3 1012 | . . . . 5 |
23 | 20, 22 | sstrid 3158 | . . . 4 |
24 | inss2 3348 | . . . . 5 | |
25 | 2 | ntrss2 12915 | . . . . . 6 |
26 | 25 | 3adant2 1011 | . . . . 5 |
27 | 24, 26 | sstrid 3158 | . . . 4 |
28 | 23, 27 | ssind 3351 | . . 3 |
29 | 2 | ssntr 12916 | . . 3 |
30 | 11, 13, 19, 28, 29 | syl22anc 1234 | . 2 |
31 | 10, 30 | eqssd 3164 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wcel 2141 cin 3120 wss 3121 cuni 3796 cfv 5198 ctop 12789 cnt 12887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-ntr 12890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |