ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrin Unicode version

Theorem ntrin 12918
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrin  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 3347 . . . . 5  |-  ( A  i^i  B )  C_  A
2 clscld.1 . . . . . 6  |-  X  = 
U. J
32ntrss 12913 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  ( A  i^i  B )  C_  A )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
41, 3mp3an3 1321 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
543adant3 1012 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
6 inss2 3348 . . . . 5  |-  ( A  i^i  B )  C_  B
72ntrss 12913 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X  /\  ( A  i^i  B )  C_  B )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
86, 7mp3an3 1321 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
983adant2 1011 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
105, 9ssind 3351 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
11 simp1 992 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  J  e.  Top )
12 ssinss1 3356 . . . 4  |-  ( A 
C_  X  ->  ( A  i^i  B )  C_  X )
13123ad2ant2 1014 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  ( A  i^i  B )  C_  X )
142ntropn 12911 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
15143adant3 1012 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  e.  J )
162ntropn 12911 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  e.  J )
17163adant2 1011 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  e.  J )
18 inopn 12795 . . . 4  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J  /\  (
( int `  J
) `  B )  e.  J )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
1911, 15, 17, 18syl3anc 1233 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
20 inss1 3347 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  A )
212ntrss2 12915 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  C_  A )
22213adant3 1012 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  C_  A )
2320, 22sstrid 3158 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  A )
24 inss2 3348 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  B )
252ntrss2 12915 . . . . . 6  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  C_  B )
26253adant2 1011 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  C_  B )
2724, 26sstrid 3158 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  B )
2823, 27ssind 3351 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( A  i^i  B ) )
292ssntr 12916 . . 3  |-  ( ( ( J  e.  Top  /\  ( A  i^i  B
)  C_  X )  /\  ( ( ( ( int `  J ) `
 A )  i^i  ( ( int `  J
) `  B )
)  e.  J  /\  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) )  C_  ( A  i^i  B ) ) )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3011, 13, 19, 28, 29syl22anc 1234 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3110, 30eqssd 3164 1  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1348    e. wcel 2141    i^i cin 3120    C_ wss 3121   U.cuni 3796   ` cfv 5198   Topctop 12789   intcnt 12887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-ntr 12890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator