| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrin | Unicode version | ||
| Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| clscld.1 |
|
| Ref | Expression |
|---|---|
| ntrin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3397 |
. . . . 5
| |
| 2 | clscld.1 |
. . . . . 6
| |
| 3 | 2 | ntrss 14676 |
. . . . 5
|
| 4 | 1, 3 | mp3an3 1339 |
. . . 4
|
| 5 | 4 | 3adant3 1020 |
. . 3
|
| 6 | inss2 3398 |
. . . . 5
| |
| 7 | 2 | ntrss 14676 |
. . . . 5
|
| 8 | 6, 7 | mp3an3 1339 |
. . . 4
|
| 9 | 8 | 3adant2 1019 |
. . 3
|
| 10 | 5, 9 | ssind 3401 |
. 2
|
| 11 | simp1 1000 |
. . 3
| |
| 12 | ssinss1 3406 |
. . . 4
| |
| 13 | 12 | 3ad2ant2 1022 |
. . 3
|
| 14 | 2 | ntropn 14674 |
. . . . 5
|
| 15 | 14 | 3adant3 1020 |
. . . 4
|
| 16 | 2 | ntropn 14674 |
. . . . 5
|
| 17 | 16 | 3adant2 1019 |
. . . 4
|
| 18 | inopn 14560 |
. . . 4
| |
| 19 | 11, 15, 17, 18 | syl3anc 1250 |
. . 3
|
| 20 | inss1 3397 |
. . . . 5
| |
| 21 | 2 | ntrss2 14678 |
. . . . . 6
|
| 22 | 21 | 3adant3 1020 |
. . . . 5
|
| 23 | 20, 22 | sstrid 3208 |
. . . 4
|
| 24 | inss2 3398 |
. . . . 5
| |
| 25 | 2 | ntrss2 14678 |
. . . . . 6
|
| 26 | 25 | 3adant2 1019 |
. . . . 5
|
| 27 | 24, 26 | sstrid 3208 |
. . . 4
|
| 28 | 23, 27 | ssind 3401 |
. . 3
|
| 29 | 2 | ssntr 14679 |
. . 3
|
| 30 | 11, 13, 19, 28, 29 | syl22anc 1251 |
. 2
|
| 31 | 10, 30 | eqssd 3214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-top 14555 df-ntr 14653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |