| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrin | Unicode version | ||
| Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| clscld.1 |
|
| Ref | Expression |
|---|---|
| ntrin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3383 |
. . . . 5
| |
| 2 | clscld.1 |
. . . . . 6
| |
| 3 | 2 | ntrss 14355 |
. . . . 5
|
| 4 | 1, 3 | mp3an3 1337 |
. . . 4
|
| 5 | 4 | 3adant3 1019 |
. . 3
|
| 6 | inss2 3384 |
. . . . 5
| |
| 7 | 2 | ntrss 14355 |
. . . . 5
|
| 8 | 6, 7 | mp3an3 1337 |
. . . 4
|
| 9 | 8 | 3adant2 1018 |
. . 3
|
| 10 | 5, 9 | ssind 3387 |
. 2
|
| 11 | simp1 999 |
. . 3
| |
| 12 | ssinss1 3392 |
. . . 4
| |
| 13 | 12 | 3ad2ant2 1021 |
. . 3
|
| 14 | 2 | ntropn 14353 |
. . . . 5
|
| 15 | 14 | 3adant3 1019 |
. . . 4
|
| 16 | 2 | ntropn 14353 |
. . . . 5
|
| 17 | 16 | 3adant2 1018 |
. . . 4
|
| 18 | inopn 14239 |
. . . 4
| |
| 19 | 11, 15, 17, 18 | syl3anc 1249 |
. . 3
|
| 20 | inss1 3383 |
. . . . 5
| |
| 21 | 2 | ntrss2 14357 |
. . . . . 6
|
| 22 | 21 | 3adant3 1019 |
. . . . 5
|
| 23 | 20, 22 | sstrid 3194 |
. . . 4
|
| 24 | inss2 3384 |
. . . . 5
| |
| 25 | 2 | ntrss2 14357 |
. . . . . 6
|
| 26 | 25 | 3adant2 1018 |
. . . . 5
|
| 27 | 24, 26 | sstrid 3194 |
. . . 4
|
| 28 | 23, 27 | ssind 3387 |
. . 3
|
| 29 | 2 | ssntr 14358 |
. . 3
|
| 30 | 11, 13, 19, 28, 29 | syl22anc 1250 |
. 2
|
| 31 | 10, 30 | eqssd 3200 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-top 14234 df-ntr 14332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |