ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrin Unicode version

Theorem ntrin 14596
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrin  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 3393 . . . . 5  |-  ( A  i^i  B )  C_  A
2 clscld.1 . . . . . 6  |-  X  = 
U. J
32ntrss 14591 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  ( A  i^i  B )  C_  A )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
41, 3mp3an3 1339 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
543adant3 1020 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
6 inss2 3394 . . . . 5  |-  ( A  i^i  B )  C_  B
72ntrss 14591 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X  /\  ( A  i^i  B )  C_  B )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
86, 7mp3an3 1339 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
983adant2 1019 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
105, 9ssind 3397 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
11 simp1 1000 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  J  e.  Top )
12 ssinss1 3402 . . . 4  |-  ( A 
C_  X  ->  ( A  i^i  B )  C_  X )
13123ad2ant2 1022 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  ( A  i^i  B )  C_  X )
142ntropn 14589 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
15143adant3 1020 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  e.  J )
162ntropn 14589 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  e.  J )
17163adant2 1019 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  e.  J )
18 inopn 14475 . . . 4  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J  /\  (
( int `  J
) `  B )  e.  J )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
1911, 15, 17, 18syl3anc 1250 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
20 inss1 3393 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  A )
212ntrss2 14593 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  C_  A )
22213adant3 1020 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  C_  A )
2320, 22sstrid 3204 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  A )
24 inss2 3394 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  B )
252ntrss2 14593 . . . . . 6  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  C_  B )
26253adant2 1019 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  C_  B )
2724, 26sstrid 3204 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  B )
2823, 27ssind 3397 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( A  i^i  B ) )
292ssntr 14594 . . 3  |-  ( ( ( J  e.  Top  /\  ( A  i^i  B
)  C_  X )  /\  ( ( ( ( int `  J ) `
 A )  i^i  ( ( int `  J
) `  B )
)  e.  J  /\  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) )  C_  ( A  i^i  B ) ) )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3011, 13, 19, 28, 29syl22anc 1251 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3110, 30eqssd 3210 1  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176    i^i cin 3165    C_ wss 3166   U.cuni 3850   ` cfv 5271   Topctop 14469   intcnt 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 14470  df-ntr 14568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator