| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrin | Unicode version | ||
| Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| clscld.1 |
|
| Ref | Expression |
|---|---|
| ntrin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3392 |
. . . . 5
| |
| 2 | clscld.1 |
. . . . . 6
| |
| 3 | 2 | ntrss 14562 |
. . . . 5
|
| 4 | 1, 3 | mp3an3 1338 |
. . . 4
|
| 5 | 4 | 3adant3 1019 |
. . 3
|
| 6 | inss2 3393 |
. . . . 5
| |
| 7 | 2 | ntrss 14562 |
. . . . 5
|
| 8 | 6, 7 | mp3an3 1338 |
. . . 4
|
| 9 | 8 | 3adant2 1018 |
. . 3
|
| 10 | 5, 9 | ssind 3396 |
. 2
|
| 11 | simp1 999 |
. . 3
| |
| 12 | ssinss1 3401 |
. . . 4
| |
| 13 | 12 | 3ad2ant2 1021 |
. . 3
|
| 14 | 2 | ntropn 14560 |
. . . . 5
|
| 15 | 14 | 3adant3 1019 |
. . . 4
|
| 16 | 2 | ntropn 14560 |
. . . . 5
|
| 17 | 16 | 3adant2 1018 |
. . . 4
|
| 18 | inopn 14446 |
. . . 4
| |
| 19 | 11, 15, 17, 18 | syl3anc 1249 |
. . 3
|
| 20 | inss1 3392 |
. . . . 5
| |
| 21 | 2 | ntrss2 14564 |
. . . . . 6
|
| 22 | 21 | 3adant3 1019 |
. . . . 5
|
| 23 | 20, 22 | sstrid 3203 |
. . . 4
|
| 24 | inss2 3393 |
. . . . 5
| |
| 25 | 2 | ntrss2 14564 |
. . . . . 6
|
| 26 | 25 | 3adant2 1018 |
. . . . 5
|
| 27 | 24, 26 | sstrid 3203 |
. . . 4
|
| 28 | 23, 27 | ssind 3396 |
. . 3
|
| 29 | 2 | ssntr 14565 |
. . 3
|
| 30 | 11, 13, 19, 28, 29 | syl22anc 1250 |
. 2
|
| 31 | 10, 30 | eqssd 3209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-top 14441 df-ntr 14539 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |