ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrin Unicode version

Theorem ntrin 14360
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrin  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 3383 . . . . 5  |-  ( A  i^i  B )  C_  A
2 clscld.1 . . . . . 6  |-  X  = 
U. J
32ntrss 14355 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  ( A  i^i  B )  C_  A )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
41, 3mp3an3 1337 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
543adant3 1019 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
6 inss2 3384 . . . . 5  |-  ( A  i^i  B )  C_  B
72ntrss 14355 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X  /\  ( A  i^i  B )  C_  B )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
86, 7mp3an3 1337 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
983adant2 1018 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
105, 9ssind 3387 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
11 simp1 999 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  J  e.  Top )
12 ssinss1 3392 . . . 4  |-  ( A 
C_  X  ->  ( A  i^i  B )  C_  X )
13123ad2ant2 1021 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  ( A  i^i  B )  C_  X )
142ntropn 14353 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
15143adant3 1019 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  e.  J )
162ntropn 14353 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  e.  J )
17163adant2 1018 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  e.  J )
18 inopn 14239 . . . 4  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J  /\  (
( int `  J
) `  B )  e.  J )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
1911, 15, 17, 18syl3anc 1249 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
20 inss1 3383 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  A )
212ntrss2 14357 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  C_  A )
22213adant3 1019 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  C_  A )
2320, 22sstrid 3194 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  A )
24 inss2 3384 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  B )
252ntrss2 14357 . . . . . 6  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  C_  B )
26253adant2 1018 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  C_  B )
2724, 26sstrid 3194 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  B )
2823, 27ssind 3387 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( A  i^i  B ) )
292ssntr 14358 . . 3  |-  ( ( ( J  e.  Top  /\  ( A  i^i  B
)  C_  X )  /\  ( ( ( ( int `  J ) `
 A )  i^i  ( ( int `  J
) `  B )
)  e.  J  /\  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) )  C_  ( A  i^i  B ) ) )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3011, 13, 19, 28, 29syl22anc 1250 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3110, 30eqssd 3200 1  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167    i^i cin 3156    C_ wss 3157   U.cuni 3839   ` cfv 5258   Topctop 14233   intcnt 14329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-top 14234  df-ntr 14332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator