ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrin Unicode version

Theorem ntrin 14538
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrin  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 3392 . . . . 5  |-  ( A  i^i  B )  C_  A
2 clscld.1 . . . . . 6  |-  X  = 
U. J
32ntrss 14533 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  ( A  i^i  B )  C_  A )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
41, 3mp3an3 1338 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
543adant3 1019 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  A )
)
6 inss2 3393 . . . . 5  |-  ( A  i^i  B )  C_  B
72ntrss 14533 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X  /\  ( A  i^i  B )  C_  B )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
86, 7mp3an3 1338 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
983adant2 1018 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( int `  J
) `  B )
)
105, 9ssind 3396 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  C_  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
11 simp1 999 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  J  e.  Top )
12 ssinss1 3401 . . . 4  |-  ( A 
C_  X  ->  ( A  i^i  B )  C_  X )
13123ad2ant2 1021 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  ( A  i^i  B )  C_  X )
142ntropn 14531 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  e.  J )
15143adant3 1019 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  e.  J )
162ntropn 14531 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  e.  J )
17163adant2 1018 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  e.  J )
18 inopn 14417 . . . 4  |-  ( ( J  e.  Top  /\  ( ( int `  J
) `  A )  e.  J  /\  (
( int `  J
) `  B )  e.  J )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
1911, 15, 17, 18syl3anc 1249 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  e.  J )
20 inss1 3392 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  A )
212ntrss2 14535 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( ( int `  J
) `  A )  C_  A )
22213adant3 1019 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  A )  C_  A )
2320, 22sstrid 3203 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  A )
24 inss2 3393 . . . . 5  |-  ( ( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  B )
252ntrss2 14535 . . . . . 6  |-  ( ( J  e.  Top  /\  B  C_  X )  -> 
( ( int `  J
) `  B )  C_  B )
26253adant2 1018 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  B )  C_  B )
2724, 26sstrid 3203 . . . 4  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  B )
2823, 27ssind 3396 . . 3  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( A  i^i  B ) )
292ssntr 14536 . . 3  |-  ( ( ( J  e.  Top  /\  ( A  i^i  B
)  C_  X )  /\  ( ( ( ( int `  J ) `
 A )  i^i  ( ( int `  J
) `  B )
)  e.  J  /\  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) )  C_  ( A  i^i  B ) ) )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3011, 13, 19, 28, 29syl22anc 1250 . 2  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( ( int `  J
) `  A )  i^i  ( ( int `  J
) `  B )
)  C_  ( ( int `  J ) `  ( A  i^i  B ) ) )
3110, 30eqssd 3209 1  |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  (
( int `  J
) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A
)  i^i  ( ( int `  J ) `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175    i^i cin 3164    C_ wss 3165   U.cuni 3849   ` cfv 5270   Topctop 14411   intcnt 14507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-top 14412  df-ntr 14510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator