ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrin Unicode version

Theorem ssrin 3265
Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssrin  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )

Proof of Theorem ssrin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 3055 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21anim1d 332 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  x  e.  C
)  ->  ( x  e.  B  /\  x  e.  C ) ) )
3 elin 3223 . . 3  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
4 elin 3223 . . 3  |-  ( x  e.  ( B  i^i  C )  <->  ( x  e.  B  /\  x  e.  C ) )
52, 3, 43imtr4g 204 . 2  |-  ( A 
C_  B  ->  (
x  e.  ( A  i^i  C )  ->  x  e.  ( B  i^i  C ) ) )
65ssrdv 3067 1  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1461    i^i cin 3034    C_ wss 3035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-in 3041  df-ss 3048
This theorem is referenced by:  sslin  3266  ssrind  3267  ss2in  3268  ssdisj  3383  ssdifin0  3408  ssres  4801  phplem2  6698  sbthlem7  6801  fiss  6815  tgss  12069  metrest  12489
  Copyright terms: Public domain W3C validator