Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrind Unicode version

Theorem ssrind 3330
 Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
ssrind.1
Assertion
Ref Expression
ssrind

Proof of Theorem ssrind
StepHypRef Expression
1 ssrind.1 . 2
2 ssrin 3328 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   cin 3097   wss 3098 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-in 3104  df-ss 3111 This theorem is referenced by:  restbasg  12515
 Copyright terms: Public domain W3C validator