| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restbasg | Unicode version | ||
| Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| restbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 |
. . 3
| |
| 2 | elrest 13153 |
. . . . . . 7
| |
| 3 | elrest 13153 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12d 473 |
. . . . . 6
|
| 5 | reeanv 2677 |
. . . . . 6
| |
| 6 | 4, 5 | bitr4di 198 |
. . . . 5
|
| 7 | simplll 533 |
. . . . . . . . . 10
| |
| 8 | simplrl 535 |
. . . . . . . . . 10
| |
| 9 | simplrr 536 |
. . . . . . . . . 10
| |
| 10 | simpr 110 |
. . . . . . . . . . 11
| |
| 11 | 10 | elin1d 3366 |
. . . . . . . . . 10
|
| 12 | basis2 14595 |
. . . . . . . . . 10
| |
| 13 | 7, 8, 9, 11, 12 | syl22anc 1251 |
. . . . . . . . 9
|
| 14 | simplll 533 |
. . . . . . . . . . . 12
| |
| 15 | 14 | simpld 112 |
. . . . . . . . . . 11
|
| 16 | 14 | simprd 114 |
. . . . . . . . . . 11
|
| 17 | simprl 529 |
. . . . . . . . . . 11
| |
| 18 | elrestr 13154 |
. . . . . . . . . . 11
| |
| 19 | 15, 16, 17, 18 | syl3anc 1250 |
. . . . . . . . . 10
|
| 20 | simprrl 539 |
. . . . . . . . . . 11
| |
| 21 | simplr 528 |
. . . . . . . . . . . 12
| |
| 22 | 21 | elin2d 3367 |
. . . . . . . . . . 11
|
| 23 | 20, 22 | elind 3362 |
. . . . . . . . . 10
|
| 24 | simprrr 540 |
. . . . . . . . . . 11
| |
| 25 | 24 | ssrind 3404 |
. . . . . . . . . 10
|
| 26 | eleq2 2270 |
. . . . . . . . . . . 12
| |
| 27 | sseq1 3220 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | anbi12d 473 |
. . . . . . . . . . 11
|
| 29 | 28 | rspcev 2881 |
. . . . . . . . . 10
|
| 30 | 19, 23, 25, 29 | syl12anc 1248 |
. . . . . . . . 9
|
| 31 | 13, 30 | rexlimddv 2629 |
. . . . . . . 8
|
| 32 | 31 | ralrimiva 2580 |
. . . . . . 7
|
| 33 | ineq12 3373 |
. . . . . . . . 9
| |
| 34 | inindir 3395 |
. . . . . . . . 9
| |
| 35 | 33, 34 | eqtr4di 2257 |
. . . . . . . 8
|
| 36 | 35 | sseq2d 3227 |
. . . . . . . . . 10
|
| 37 | 36 | anbi2d 464 |
. . . . . . . . 9
|
| 38 | 37 | rexbidv 2508 |
. . . . . . . 8
|
| 39 | 35, 38 | raleqbidv 2719 |
. . . . . . 7
|
| 40 | 32, 39 | syl5ibrcom 157 |
. . . . . 6
|
| 41 | 40 | rexlimdvva 2632 |
. . . . 5
|
| 42 | 6, 41 | sylbid 150 |
. . . 4
|
| 43 | 42 | ralrimivv 2588 |
. . 3
|
| 44 | 1, 43 | sylan2 286 |
. 2
|
| 45 | restfn 13150 |
. . . 4
| |
| 46 | simpl 109 |
. . . . 5
| |
| 47 | 46 | elexd 2787 |
. . . 4
|
| 48 | 1 | adantl 277 |
. . . 4
|
| 49 | fnovex 5990 |
. . . 4
| |
| 50 | 45, 47, 48, 49 | mp3an2i 1355 |
. . 3
|
| 51 | isbasis2g 14592 |
. . 3
| |
| 52 | 50, 51 | syl 14 |
. 2
|
| 53 | 44, 52 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-rest 13148 df-bases 14590 |
| This theorem is referenced by: resttop 14717 |
| Copyright terms: Public domain | W3C validator |