Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restbasg | Unicode version |
Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
restbasg | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 | |
2 | elrest 12563 | . . . . . . 7 ↾t | |
3 | elrest 12563 | . . . . . . 7 ↾t | |
4 | 2, 3 | anbi12d 465 | . . . . . 6 ↾t ↾t |
5 | reeanv 2635 | . . . . . 6 | |
6 | 4, 5 | bitr4di 197 | . . . . 5 ↾t ↾t |
7 | simplll 523 | . . . . . . . . . 10 | |
8 | simplrl 525 | . . . . . . . . . 10 | |
9 | simplrr 526 | . . . . . . . . . 10 | |
10 | simpr 109 | . . . . . . . . . . 11 | |
11 | 10 | elin1d 3311 | . . . . . . . . . 10 |
12 | basis2 12686 | . . . . . . . . . 10 | |
13 | 7, 8, 9, 11, 12 | syl22anc 1229 | . . . . . . . . 9 |
14 | simplll 523 | . . . . . . . . . . . 12 | |
15 | 14 | simpld 111 | . . . . . . . . . . 11 |
16 | 14 | simprd 113 | . . . . . . . . . . 11 |
17 | simprl 521 | . . . . . . . . . . 11 | |
18 | elrestr 12564 | . . . . . . . . . . 11 ↾t | |
19 | 15, 16, 17, 18 | syl3anc 1228 | . . . . . . . . . 10 ↾t |
20 | simprrl 529 | . . . . . . . . . . 11 | |
21 | simplr 520 | . . . . . . . . . . . 12 | |
22 | 21 | elin2d 3312 | . . . . . . . . . . 11 |
23 | 20, 22 | elind 3307 | . . . . . . . . . 10 |
24 | simprrr 530 | . . . . . . . . . . 11 | |
25 | 24 | ssrind 3349 | . . . . . . . . . 10 |
26 | eleq2 2230 | . . . . . . . . . . . 12 | |
27 | sseq1 3165 | . . . . . . . . . . . 12 | |
28 | 26, 27 | anbi12d 465 | . . . . . . . . . . 11 |
29 | 28 | rspcev 2830 | . . . . . . . . . 10 ↾t ↾t |
30 | 19, 23, 25, 29 | syl12anc 1226 | . . . . . . . . 9 ↾t |
31 | 13, 30 | rexlimddv 2588 | . . . . . . . 8 ↾t |
32 | 31 | ralrimiva 2539 | . . . . . . 7 ↾t |
33 | ineq12 3318 | . . . . . . . . 9 | |
34 | inindir 3340 | . . . . . . . . 9 | |
35 | 33, 34 | eqtr4di 2217 | . . . . . . . 8 |
36 | 35 | sseq2d 3172 | . . . . . . . . . 10 |
37 | 36 | anbi2d 460 | . . . . . . . . 9 |
38 | 37 | rexbidv 2467 | . . . . . . . 8 ↾t ↾t |
39 | 35, 38 | raleqbidv 2673 | . . . . . . 7 ↾t ↾t |
40 | 32, 39 | syl5ibrcom 156 | . . . . . 6 ↾t |
41 | 40 | rexlimdvva 2591 | . . . . 5 ↾t |
42 | 6, 41 | sylbid 149 | . . . 4 ↾t ↾t ↾t |
43 | 42 | ralrimivv 2547 | . . 3 ↾t ↾t ↾t |
44 | 1, 43 | sylan2 284 | . 2 ↾t ↾t ↾t |
45 | restfn 12560 | . . . 4 ↾t | |
46 | simpl 108 | . . . . 5 | |
47 | 46 | elexd 2739 | . . . 4 |
48 | 1 | adantl 275 | . . . 4 |
49 | fnovex 5875 | . . . 4 ↾t ↾t | |
50 | 45, 47, 48, 49 | mp3an2i 1332 | . . 3 ↾t |
51 | isbasis2g 12683 | . . 3 ↾t ↾t ↾t ↾t ↾t | |
52 | 50, 51 | syl 14 | . 2 ↾t ↾t ↾t ↾t |
53 | 44, 52 | mpbird 166 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 cin 3115 wss 3116 cxp 4602 wfn 5183 (class class class)co 5842 ↾t crest 12556 ctb 12680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-rest 12558 df-bases 12681 |
This theorem is referenced by: resttop 12810 |
Copyright terms: Public domain | W3C validator |