Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restbasg | Unicode version |
Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
restbasg | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . 3 | |
2 | elrest 12586 | . . . . . . 7 ↾t | |
3 | elrest 12586 | . . . . . . 7 ↾t | |
4 | 2, 3 | anbi12d 470 | . . . . . 6 ↾t ↾t |
5 | reeanv 2639 | . . . . . 6 | |
6 | 4, 5 | bitr4di 197 | . . . . 5 ↾t ↾t |
7 | simplll 528 | . . . . . . . . . 10 | |
8 | simplrl 530 | . . . . . . . . . 10 | |
9 | simplrr 531 | . . . . . . . . . 10 | |
10 | simpr 109 | . . . . . . . . . . 11 | |
11 | 10 | elin1d 3316 | . . . . . . . . . 10 |
12 | basis2 12840 | . . . . . . . . . 10 | |
13 | 7, 8, 9, 11, 12 | syl22anc 1234 | . . . . . . . . 9 |
14 | simplll 528 | . . . . . . . . . . . 12 | |
15 | 14 | simpld 111 | . . . . . . . . . . 11 |
16 | 14 | simprd 113 | . . . . . . . . . . 11 |
17 | simprl 526 | . . . . . . . . . . 11 | |
18 | elrestr 12587 | . . . . . . . . . . 11 ↾t | |
19 | 15, 16, 17, 18 | syl3anc 1233 | . . . . . . . . . 10 ↾t |
20 | simprrl 534 | . . . . . . . . . . 11 | |
21 | simplr 525 | . . . . . . . . . . . 12 | |
22 | 21 | elin2d 3317 | . . . . . . . . . . 11 |
23 | 20, 22 | elind 3312 | . . . . . . . . . 10 |
24 | simprrr 535 | . . . . . . . . . . 11 | |
25 | 24 | ssrind 3354 | . . . . . . . . . 10 |
26 | eleq2 2234 | . . . . . . . . . . . 12 | |
27 | sseq1 3170 | . . . . . . . . . . . 12 | |
28 | 26, 27 | anbi12d 470 | . . . . . . . . . . 11 |
29 | 28 | rspcev 2834 | . . . . . . . . . 10 ↾t ↾t |
30 | 19, 23, 25, 29 | syl12anc 1231 | . . . . . . . . 9 ↾t |
31 | 13, 30 | rexlimddv 2592 | . . . . . . . 8 ↾t |
32 | 31 | ralrimiva 2543 | . . . . . . 7 ↾t |
33 | ineq12 3323 | . . . . . . . . 9 | |
34 | inindir 3345 | . . . . . . . . 9 | |
35 | 33, 34 | eqtr4di 2221 | . . . . . . . 8 |
36 | 35 | sseq2d 3177 | . . . . . . . . . 10 |
37 | 36 | anbi2d 461 | . . . . . . . . 9 |
38 | 37 | rexbidv 2471 | . . . . . . . 8 ↾t ↾t |
39 | 35, 38 | raleqbidv 2677 | . . . . . . 7 ↾t ↾t |
40 | 32, 39 | syl5ibrcom 156 | . . . . . 6 ↾t |
41 | 40 | rexlimdvva 2595 | . . . . 5 ↾t |
42 | 6, 41 | sylbid 149 | . . . 4 ↾t ↾t ↾t |
43 | 42 | ralrimivv 2551 | . . 3 ↾t ↾t ↾t |
44 | 1, 43 | sylan2 284 | . 2 ↾t ↾t ↾t |
45 | restfn 12583 | . . . 4 ↾t | |
46 | simpl 108 | . . . . 5 | |
47 | 46 | elexd 2743 | . . . 4 |
48 | 1 | adantl 275 | . . . 4 |
49 | fnovex 5886 | . . . 4 ↾t ↾t | |
50 | 45, 47, 48, 49 | mp3an2i 1337 | . . 3 ↾t |
51 | isbasis2g 12837 | . . 3 ↾t ↾t ↾t ↾t ↾t | |
52 | 50, 51 | syl 14 | . 2 ↾t ↾t ↾t ↾t |
53 | 44, 52 | mpbird 166 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 cin 3120 wss 3121 cxp 4609 wfn 5193 (class class class)co 5853 ↾t crest 12579 ctb 12834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-rest 12581 df-bases 12835 |
This theorem is referenced by: resttop 12964 |
Copyright terms: Public domain | W3C validator |