ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restbasg Unicode version

Theorem restbasg 12119
Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restbasg  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  ( Bt  A )  e.  TopBases )

Proof of Theorem restbasg
Dummy variables  a  b  c  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2652 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
2 elrest 11909 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
a  e.  ( Bt  A )  <->  E. u  e.  B  a  =  ( u  i^i  A ) ) )
3 elrest 11909 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
b  e.  ( Bt  A )  <->  E. v  e.  B  b  =  ( v  i^i  A ) ) )
42, 3anbi12d 460 . . . . . 6  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  <->  ( E. u  e.  B  a  =  ( u  i^i 
A )  /\  E. v  e.  B  b  =  ( v  i^i 
A ) ) ) )
5 reeanv 2558 . . . . . 6  |-  ( E. u  e.  B  E. v  e.  B  (
a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  <->  ( E. u  e.  B  a  =  ( u  i^i 
A )  /\  E. v  e.  B  b  =  ( v  i^i 
A ) ) )
64, 5syl6bbr 197 . . . . 5  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  <->  E. u  e.  B  E. v  e.  B  ( a  =  ( u  i^i 
A )  /\  b  =  ( v  i^i 
A ) ) ) )
7 simplll 503 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  B  e.  TopBases )
8 simplrl 505 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  u  e.  B )
9 simplrr 506 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
v  e.  B )
10 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
c  e.  ( ( u  i^i  v )  i^i  A ) )
1110elin1d 3212 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
c  e.  ( u  i^i  v ) )
12 basis2 11997 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  e.  B )  /\  ( v  e.  B  /\  c  e.  (
u  i^i  v )
) )  ->  E. z  e.  B  ( c  e.  z  /\  z  C_  ( u  i^i  v
) ) )
137, 8, 9, 11, 12syl22anc 1185 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  E. z  e.  B  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) )
14 simplll 503 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( B  e.  TopBases  /\  A  e.  _V )
)
1514simpld 111 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  B  e.  TopBases )
1614simprd 113 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  A  e.  _V )
17 simprl 501 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
z  e.  B )
18 elrestr 11910 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  A  e.  _V  /\  z  e.  B )  ->  (
z  i^i  A )  e.  ( Bt  A ) )
1915, 16, 17, 18syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( z  i^i  A
)  e.  ( Bt  A ) )
20 simprrl 509 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  z )
21 simplr 500 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  ( ( u  i^i  v )  i^i  A ) )
2221elin2d 3213 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  A )
2320, 22elind 3208 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  ( z  i^i  A ) )
24 simprrr 510 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
z  C_  ( u  i^i  v ) )
2524ssrind 3250 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( z  i^i  A
)  C_  ( (
u  i^i  v )  i^i  A ) )
26 eleq2 2163 . . . . . . . . . . . 12  |-  ( w  =  ( z  i^i 
A )  ->  (
c  e.  w  <->  c  e.  ( z  i^i  A
) ) )
27 sseq1 3070 . . . . . . . . . . . 12  |-  ( w  =  ( z  i^i 
A )  ->  (
w  C_  ( (
u  i^i  v )  i^i  A )  <->  ( z  i^i  A )  C_  (
( u  i^i  v
)  i^i  A )
) )
2826, 27anbi12d 460 . . . . . . . . . . 11  |-  ( w  =  ( z  i^i 
A )  ->  (
( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A ) )  <-> 
( c  e.  ( z  i^i  A )  /\  ( z  i^i 
A )  C_  (
( u  i^i  v
)  i^i  A )
) ) )
2928rspcev 2744 . . . . . . . . . 10  |-  ( ( ( z  i^i  A
)  e.  ( Bt  A )  /\  ( c  e.  ( z  i^i 
A )  /\  (
z  i^i  A )  C_  ( ( u  i^i  v )  i^i  A
) ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3019, 23, 25, 29syl12anc 1182 . . . . . . . . 9  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3113, 30rexlimddv 2513 . . . . . . . 8  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3231ralrimiva 2464 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B
) )  ->  A. c  e.  ( ( u  i^i  v )  i^i  A
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
33 ineq12 3219 . . . . . . . . 9  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( a  i^i  b
)  =  ( ( u  i^i  A )  i^i  ( v  i^i 
A ) ) )
34 inindir 3241 . . . . . . . . 9  |-  ( ( u  i^i  v )  i^i  A )  =  ( ( u  i^i 
A )  i^i  (
v  i^i  A )
)
3533, 34syl6eqr 2150 . . . . . . . 8  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( a  i^i  b
)  =  ( ( u  i^i  v )  i^i  A ) )
3635sseq2d 3077 . . . . . . . . . 10  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( w  C_  (
a  i^i  b )  <->  w 
C_  ( ( u  i^i  v )  i^i 
A ) ) )
3736anbi2d 455 . . . . . . . . 9  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
3837rexbidv 2397 . . . . . . . 8  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
3935, 38raleqbidv 2596 . . . . . . 7  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  A. c  e.  ( ( u  i^i  v )  i^i  A
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
4032, 39syl5ibrcom 156 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B
) )  ->  (
( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  ->  A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4140rexlimdvva 2516 . . . . 5  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  ( E. u  e.  B  E. v  e.  B  ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  ->  A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
426, 41sylbid 149 . . . 4  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  ->  A. c  e.  (
a  i^i  b ) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4342ralrimivv 2472 . . 3  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) )
441, 43sylan2 282 . 2  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) )
45 restfn 11906 . . . 4  |-t  Fn  ( _V  X.  _V )
46 simpl 108 . . . . 5  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  B  e. 
TopBases )
4746elexd 2654 . . . 4  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  B  e.  _V )
481adantl 273 . . . 4  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  A  e.  _V )
49 fnovex 5736 . . . 4  |-  ( (t  Fn  ( _V  X.  _V )  /\  B  e.  _V  /\  A  e.  _V )  ->  ( Bt  A )  e.  _V )
5045, 47, 48, 49mp3an2i 1288 . . 3  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  ( Bt  A )  e.  _V )
51 isbasis2g 11994 . . 3  |-  ( ( Bt  A )  e.  _V  ->  ( ( Bt  A )  e.  TopBases 
<-> 
A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
5250, 51syl 14 . 2  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  (
( Bt  A )  e.  TopBases  <->  A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
5344, 52mpbird 166 1  |-  ( ( B  e.  TopBases  /\  A  e.  V )  ->  ( Bt  A )  e.  TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   A.wral 2375   E.wrex 2376   _Vcvv 2641    i^i cin 3020    C_ wss 3021    X. cxp 4475    Fn wfn 5054  (class class class)co 5706   ↾t crest 11902   TopBasesctb 11991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-rest 11904  df-bases 11992
This theorem is referenced by:  resttop  12121
  Copyright terms: Public domain W3C validator