| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > restbasg | Unicode version | ||
| Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| restbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. . 3
| |
| 2 | elrest 12996 |
. . . . . . 7
| |
| 3 | elrest 12996 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12d 473 |
. . . . . 6
|
| 5 | reeanv 2675 |
. . . . . 6
| |
| 6 | 4, 5 | bitr4di 198 |
. . . . 5
|
| 7 | simplll 533 |
. . . . . . . . . 10
| |
| 8 | simplrl 535 |
. . . . . . . . . 10
| |
| 9 | simplrr 536 |
. . . . . . . . . 10
| |
| 10 | simpr 110 |
. . . . . . . . . . 11
| |
| 11 | 10 | elin1d 3361 |
. . . . . . . . . 10
|
| 12 | basis2 14438 |
. . . . . . . . . 10
| |
| 13 | 7, 8, 9, 11, 12 | syl22anc 1250 |
. . . . . . . . 9
|
| 14 | simplll 533 |
. . . . . . . . . . . 12
| |
| 15 | 14 | simpld 112 |
. . . . . . . . . . 11
|
| 16 | 14 | simprd 114 |
. . . . . . . . . . 11
|
| 17 | simprl 529 |
. . . . . . . . . . 11
| |
| 18 | elrestr 12997 |
. . . . . . . . . . 11
| |
| 19 | 15, 16, 17, 18 | syl3anc 1249 |
. . . . . . . . . 10
|
| 20 | simprrl 539 |
. . . . . . . . . . 11
| |
| 21 | simplr 528 |
. . . . . . . . . . . 12
| |
| 22 | 21 | elin2d 3362 |
. . . . . . . . . . 11
|
| 23 | 20, 22 | elind 3357 |
. . . . . . . . . 10
|
| 24 | simprrr 540 |
. . . . . . . . . . 11
| |
| 25 | 24 | ssrind 3399 |
. . . . . . . . . 10
|
| 26 | eleq2 2268 |
. . . . . . . . . . . 12
| |
| 27 | sseq1 3215 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | anbi12d 473 |
. . . . . . . . . . 11
|
| 29 | 28 | rspcev 2876 |
. . . . . . . . . 10
|
| 30 | 19, 23, 25, 29 | syl12anc 1247 |
. . . . . . . . 9
|
| 31 | 13, 30 | rexlimddv 2627 |
. . . . . . . 8
|
| 32 | 31 | ralrimiva 2578 |
. . . . . . 7
|
| 33 | ineq12 3368 |
. . . . . . . . 9
| |
| 34 | inindir 3390 |
. . . . . . . . 9
| |
| 35 | 33, 34 | eqtr4di 2255 |
. . . . . . . 8
|
| 36 | 35 | sseq2d 3222 |
. . . . . . . . . 10
|
| 37 | 36 | anbi2d 464 |
. . . . . . . . 9
|
| 38 | 37 | rexbidv 2506 |
. . . . . . . 8
|
| 39 | 35, 38 | raleqbidv 2717 |
. . . . . . 7
|
| 40 | 32, 39 | syl5ibrcom 157 |
. . . . . 6
|
| 41 | 40 | rexlimdvva 2630 |
. . . . 5
|
| 42 | 6, 41 | sylbid 150 |
. . . 4
|
| 43 | 42 | ralrimivv 2586 |
. . 3
|
| 44 | 1, 43 | sylan2 286 |
. 2
|
| 45 | restfn 12993 |
. . . 4
| |
| 46 | simpl 109 |
. . . . 5
| |
| 47 | 46 | elexd 2784 |
. . . 4
|
| 48 | 1 | adantl 277 |
. . . 4
|
| 49 | fnovex 5967 |
. . . 4
| |
| 50 | 45, 47, 48, 49 | mp3an2i 1354 |
. . 3
|
| 51 | isbasis2g 14435 |
. . 3
| |
| 52 | 50, 51 | syl 14 |
. 2
|
| 53 | 44, 52 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-rest 12991 df-bases 14433 |
| This theorem is referenced by: resttop 14560 |
| Copyright terms: Public domain | W3C validator |