| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > restbasg | Unicode version | ||
| Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| restbasg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. . 3
 | |
| 2 | elrest 12917 | 
. . . . . . 7
 | |
| 3 | elrest 12917 | 
. . . . . . 7
 | |
| 4 | 2, 3 | anbi12d 473 | 
. . . . . 6
 | 
| 5 | reeanv 2667 | 
. . . . . 6
 | |
| 6 | 4, 5 | bitr4di 198 | 
. . . . 5
 | 
| 7 | simplll 533 | 
. . . . . . . . . 10
 | |
| 8 | simplrl 535 | 
. . . . . . . . . 10
 | |
| 9 | simplrr 536 | 
. . . . . . . . . 10
 | |
| 10 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 11 | 10 | elin1d 3352 | 
. . . . . . . . . 10
 | 
| 12 | basis2 14284 | 
. . . . . . . . . 10
 | |
| 13 | 7, 8, 9, 11, 12 | syl22anc 1250 | 
. . . . . . . . 9
 | 
| 14 | simplll 533 | 
. . . . . . . . . . . 12
 | |
| 15 | 14 | simpld 112 | 
. . . . . . . . . . 11
 | 
| 16 | 14 | simprd 114 | 
. . . . . . . . . . 11
 | 
| 17 | simprl 529 | 
. . . . . . . . . . 11
 | |
| 18 | elrestr 12918 | 
. . . . . . . . . . 11
 | |
| 19 | 15, 16, 17, 18 | syl3anc 1249 | 
. . . . . . . . . 10
 | 
| 20 | simprrl 539 | 
. . . . . . . . . . 11
 | |
| 21 | simplr 528 | 
. . . . . . . . . . . 12
 | |
| 22 | 21 | elin2d 3353 | 
. . . . . . . . . . 11
 | 
| 23 | 20, 22 | elind 3348 | 
. . . . . . . . . 10
 | 
| 24 | simprrr 540 | 
. . . . . . . . . . 11
 | |
| 25 | 24 | ssrind 3390 | 
. . . . . . . . . 10
 | 
| 26 | eleq2 2260 | 
. . . . . . . . . . . 12
 | |
| 27 | sseq1 3206 | 
. . . . . . . . . . . 12
 | |
| 28 | 26, 27 | anbi12d 473 | 
. . . . . . . . . . 11
 | 
| 29 | 28 | rspcev 2868 | 
. . . . . . . . . 10
 | 
| 30 | 19, 23, 25, 29 | syl12anc 1247 | 
. . . . . . . . 9
 | 
| 31 | 13, 30 | rexlimddv 2619 | 
. . . . . . . 8
 | 
| 32 | 31 | ralrimiva 2570 | 
. . . . . . 7
 | 
| 33 | ineq12 3359 | 
. . . . . . . . 9
 | |
| 34 | inindir 3381 | 
. . . . . . . . 9
 | |
| 35 | 33, 34 | eqtr4di 2247 | 
. . . . . . . 8
 | 
| 36 | 35 | sseq2d 3213 | 
. . . . . . . . . 10
 | 
| 37 | 36 | anbi2d 464 | 
. . . . . . . . 9
 | 
| 38 | 37 | rexbidv 2498 | 
. . . . . . . 8
 | 
| 39 | 35, 38 | raleqbidv 2709 | 
. . . . . . 7
 | 
| 40 | 32, 39 | syl5ibrcom 157 | 
. . . . . 6
 | 
| 41 | 40 | rexlimdvva 2622 | 
. . . . 5
 | 
| 42 | 6, 41 | sylbid 150 | 
. . . 4
 | 
| 43 | 42 | ralrimivv 2578 | 
. . 3
 | 
| 44 | 1, 43 | sylan2 286 | 
. 2
 | 
| 45 | restfn 12914 | 
. . . 4
 | |
| 46 | simpl 109 | 
. . . . 5
 | |
| 47 | 46 | elexd 2776 | 
. . . 4
 | 
| 48 | 1 | adantl 277 | 
. . . 4
 | 
| 49 | fnovex 5955 | 
. . . 4
 | |
| 50 | 45, 47, 48, 49 | mp3an2i 1353 | 
. . 3
 | 
| 51 | isbasis2g 14281 | 
. . 3
 | |
| 52 | 50, 51 | syl 14 | 
. 2
 | 
| 53 | 44, 52 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-rest 12912 df-bases 14279 | 
| This theorem is referenced by: resttop 14406 | 
| Copyright terms: Public domain | W3C validator |