ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslin Unicode version

Theorem sslin 3344
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
Assertion
Ref Expression
sslin  |-  ( A 
C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )

Proof of Theorem sslin
StepHypRef Expression
1 ssrin 3343 . 2  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
2 incom 3310 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3310 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33sstr4g 3181 1  |-  ( A 
C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3111    C_ wss 3112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2724  df-in 3118  df-ss 3125
This theorem is referenced by:  ss2in  3346  difdifdirss  3489  ssres2  4906  ssrnres  5041  sbthlem7  6920  ioodisj  9921  ntrss  12686  cnptoprest  12806
  Copyright terms: Public domain W3C validator