ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslin Unicode version

Theorem sslin 3398
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
Assertion
Ref Expression
sslin  |-  ( A 
C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )

Proof of Theorem sslin
StepHypRef Expression
1 ssrin 3397 . 2  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
2 incom 3364 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3364 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33sstr4g 3235 1  |-  ( A 
C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3164    C_ wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178
This theorem is referenced by:  ss2in  3400  difdifdirss  3544  ssres2  4983  ssrnres  5122  sbthlem7  7047  ioodisj  10097  ntrss  14509  cnptoprest  14629
  Copyright terms: Public domain W3C validator