ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslin Unicode version

Theorem sslin 3403
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
Assertion
Ref Expression
sslin  |-  ( A 
C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )

Proof of Theorem sslin
StepHypRef Expression
1 ssrin 3402 . 2  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
2 incom 3369 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3369 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33sstr4g 3240 1  |-  ( A 
C_  B  ->  ( C  i^i  A )  C_  ( C  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3169    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183
This theorem is referenced by:  ss2in  3405  difdifdirss  3549  ssres2  4995  ssrnres  5134  sbthlem7  7080  ioodisj  10135  ntrss  14666  cnptoprest  14786
  Copyright terms: Public domain W3C validator