ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2in Unicode version

Theorem ss2in 3361
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  i^i  C
)  C_  ( B  i^i  D ) )

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 3358 . 2  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
2 sslin 3359 . 2  |-  ( C 
C_  D  ->  ( B  i^i  C )  C_  ( B  i^i  D ) )
31, 2sylan9ss 3166 1  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  i^i  C
)  C_  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    i^i cin 3126    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140
This theorem is referenced by:  casefun  7074  caseinj  7078  djufun  7093  djuinj  7095  strleund  12517  strleun  12518  tgcl  13115  innei  13214  blin2  13483
  Copyright terms: Public domain W3C validator