ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2in Unicode version

Theorem ss2in 3409
Description: Intersection of subclasses. (Contributed by NM, 5-May-2000.)
Assertion
Ref Expression
ss2in  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  i^i  C
)  C_  ( B  i^i  D ) )

Proof of Theorem ss2in
StepHypRef Expression
1 ssrin 3406 . 2  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
2 sslin 3407 . 2  |-  ( C 
C_  D  ->  ( B  i^i  C )  C_  ( B  i^i  D ) )
31, 2sylan9ss 3214 1  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  i^i  C
)  C_  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    i^i cin 3173    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187
This theorem is referenced by:  casefun  7213  caseinj  7217  djufun  7232  djuinj  7234  strleund  13050  strleun  13051  tgcl  14651  innei  14750  blin2  15019
  Copyright terms: Public domain W3C validator