ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulgcd2 Unicode version

Theorem rpmulgcd2 11765
Description: If  M is relatively prime to  N, then the GCD of  K with  M  x.  N is the product of the GCDs with  M and  N respectively. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
rpmulgcd2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  ( M  x.  N
) )  =  ( ( K  gcd  M
)  x.  ( K  gcd  N ) ) )

Proof of Theorem rpmulgcd2
StepHypRef Expression
1 simpl1 984 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  K  e.  ZZ )
2 simpl2 985 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  M  e.  ZZ )
3 simpl3 986 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  N  e.  ZZ )
42, 3zmulcld 9172 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( M  x.  N )  e.  ZZ )
51, 4gcdcld 11646 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  ( M  x.  N
) )  e.  NN0 )
61, 2gcdcld 11646 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  M )  e.  NN0 )
71, 3gcdcld 11646 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  N )  e.  NN0 )
86, 7nn0mulcld 9028 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  e.  NN0 )
9 mulgcddvds 11764 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )
109adantr 274 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
11 gcddvds 11641 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  M ) )
121, 2, 11syl2anc 408 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M )  ||  M ) )
1312simpld 111 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  M )  ||  K )
14 gcddvds 11641 . . . . . 6  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  N ) )
151, 3, 14syl2anc 408 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  N )  ||  K  /\  ( K  gcd  N )  ||  N ) )
1615simpld 111 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  N )  ||  K )
176nn0zd 9164 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  M )  e.  ZZ )
187nn0zd 9164 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  N )  e.  ZZ )
19 gcddvds 11641 . . . . . . . . . . 11  |-  ( ( ( K  gcd  M
)  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ )  -> 
( ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  ( K  gcd  M )  /\  ( ( K  gcd  M )  gcd  ( K  gcd  N ) ) 
||  ( K  gcd  N ) ) )
2017, 18, 19syl2anc 408 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( K  gcd  M )  gcd  ( K  gcd  N ) )  ||  ( K  gcd  M )  /\  ( ( K  gcd  M )  gcd  ( K  gcd  N ) ) 
||  ( K  gcd  N ) ) )
2120simpld 111 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  ( K  gcd  M ) )
2212simprd 113 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  M )  ||  M )
2317, 18gcdcld 11646 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  e.  NN0 )
2423nn0zd 9164 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  e.  ZZ )
25 dvdstr 11519 . . . . . . . . . 10  |-  ( ( ( ( K  gcd  M )  gcd  ( K  gcd  N ) )  e.  ZZ  /\  ( K  gcd  M )  e.  ZZ  /\  M  e.  ZZ )  ->  (
( ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  ( K  gcd  M )  /\  ( K  gcd  M ) 
||  M )  -> 
( ( K  gcd  M )  gcd  ( K  gcd  N ) ) 
||  M ) )
2624, 17, 2, 25syl3anc 1216 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( ( K  gcd  M
)  gcd  ( K  gcd  N ) )  ||  ( K  gcd  M )  /\  ( K  gcd  M )  ||  M )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  M
) )
2721, 22, 26mp2and 429 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  M
)
2820simprd 113 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  ( K  gcd  N ) )
2915simprd 113 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  N )  ||  N )
30 dvdstr 11519 . . . . . . . . . 10  |-  ( ( ( ( K  gcd  M )  gcd  ( K  gcd  N ) )  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  ( K  gcd  N )  /\  ( K  gcd  N ) 
||  N )  -> 
( ( K  gcd  M )  gcd  ( K  gcd  N ) ) 
||  N ) )
3124, 18, 3, 30syl3anc 1216 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( ( K  gcd  M
)  gcd  ( K  gcd  N ) )  ||  ( K  gcd  N )  /\  ( K  gcd  N )  ||  N )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  N
) )
3228, 29, 31mp2and 429 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  N
)
33 dvdsgcd 11689 . . . . . . . . 9  |-  ( ( ( ( K  gcd  M )  gcd  ( K  gcd  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  M  /\  ( ( K  gcd  M )  gcd  ( K  gcd  N ) ) 
||  N )  -> 
( ( K  gcd  M )  gcd  ( K  gcd  N ) ) 
||  ( M  gcd  N ) ) )
3424, 2, 3, 33syl3anc 1216 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( ( K  gcd  M
)  gcd  ( K  gcd  N ) )  ||  M  /\  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  N
)  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  ( M  gcd  N ) ) )
3527, 32, 34mp2and 429 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  ( M  gcd  N ) )
36 simpr 109 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( M  gcd  N )  =  1 )
3735, 36breqtrd 3949 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  ||  1
)
38 dvds1 11540 . . . . . . 7  |-  ( ( ( K  gcd  M
)  gcd  ( K  gcd  N ) )  e. 
NN0  ->  ( ( ( K  gcd  M )  gcd  ( K  gcd  N ) )  ||  1  <->  ( ( K  gcd  M
)  gcd  ( K  gcd  N ) )  =  1 ) )
3923, 38syl 14 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( K  gcd  M )  gcd  ( K  gcd  N ) )  ||  1  <->  ( ( K  gcd  M
)  gcd  ( K  gcd  N ) )  =  1 ) )
4037, 39mpbid 146 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  gcd  ( K  gcd  N
) )  =  1 )
41 coprmdvds2 11763 . . . . 5  |-  ( ( ( ( K  gcd  M )  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ  /\  K  e.  ZZ )  /\  (
( K  gcd  M
)  gcd  ( K  gcd  N ) )  =  1 )  ->  (
( ( K  gcd  M )  ||  K  /\  ( K  gcd  N ) 
||  K )  -> 
( ( K  gcd  M )  x.  ( K  gcd  N ) ) 
||  K ) )
4217, 18, 1, 40, 41syl31anc 1219 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( K  gcd  M ) 
||  K  /\  ( K  gcd  N )  ||  K )  ->  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) 
||  K ) )
4313, 16, 42mp2and 429 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  K
)
44 dvdscmul 11509 . . . . . 6  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  ( K  gcd  M )  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( ( K  gcd  M
)  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  N ) ) )
4518, 3, 17, 44syl3anc 1216 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  N )  ||  N  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  (
( K  gcd  M
)  x.  N ) ) )
46 dvdsmulc 11510 . . . . . 6  |-  ( ( ( K  gcd  M
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  M
)  ||  M  ->  ( ( K  gcd  M
)  x.  N ) 
||  ( M  x.  N ) ) )
4717, 2, 3, 46syl3anc 1216 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  ||  M  ->  ( ( K  gcd  M )  x.  N )  ||  ( M  x.  N )
) )
4817, 18zmulcld 9172 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  e.  ZZ )
4917, 3zmulcld 9172 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  x.  N )  e.  ZZ )
50 dvdstr 11519 . . . . . 6  |-  ( ( ( ( K  gcd  M )  x.  ( K  gcd  N ) )  e.  ZZ  /\  (
( K  gcd  M
)  x.  N )  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  (
( K  gcd  M
)  x.  N )  /\  ( ( K  gcd  M )  x.  N )  ||  ( M  x.  N )
)  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  ( M  x.  N )
) )
5148, 49, 4, 50syl3anc 1216 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( ( K  gcd  M
)  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  N )  /\  (
( K  gcd  M
)  x.  N ) 
||  ( M  x.  N ) )  -> 
( ( K  gcd  M )  x.  ( K  gcd  N ) ) 
||  ( M  x.  N ) ) )
5245, 47, 51syl2and 293 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( K  gcd  N ) 
||  N  /\  ( K  gcd  M )  ||  M )  ->  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) 
||  ( M  x.  N ) ) )
5329, 22, 52mp2and 429 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  ( M  x.  N )
)
54 dvdsgcd 11689 . . . 4  |-  ( ( ( ( K  gcd  M )  x.  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  K  /\  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) 
||  ( M  x.  N ) )  -> 
( ( K  gcd  M )  x.  ( K  gcd  N ) ) 
||  ( K  gcd  ( M  x.  N
) ) ) )
5548, 1, 4, 54syl3anc 1216 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( ( ( K  gcd  M
)  x.  ( K  gcd  N ) ) 
||  K  /\  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) 
||  ( M  x.  N ) )  -> 
( ( K  gcd  M )  x.  ( K  gcd  N ) ) 
||  ( K  gcd  ( M  x.  N
) ) ) )
5643, 53, 55mp2and 429 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  ( K  gcd  ( M  x.  N ) ) )
57 dvdseq 11535 . 2  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  e.  NN0  /\  ( ( K  gcd  M )  x.  ( K  gcd  N ) )  e.  NN0 )  /\  ( ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) )  /\  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  ||  ( K  gcd  ( M  x.  N ) ) ) )  ->  ( K  gcd  ( M  x.  N
) )  =  ( ( K  gcd  M
)  x.  ( K  gcd  N ) ) )
585, 8, 10, 56, 57syl22anc 1217 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( K  gcd  ( M  x.  N
) )  =  ( ( K  gcd  M
)  x.  ( K  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   1c1 7614    x. cmul 7618   NN0cn0 8970   ZZcz 9047    || cdvds 11482    gcd cgcd 11624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator