ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssu Unicode version

Theorem recexprlem1ssu 7343
Description: The upper cut of one is a subset of the upper cut of  A  .P.  B. Lemma for recexpr 7347. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlem1ssu  |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlem1ssu
Dummy variables  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pru 7265 . . . 4  |-  ( 2nd `  1P )  =  {
w  |  1Q  <Q  w }
21abeq2i 2210 . . 3  |-  ( w  e.  ( 2nd `  1P ) 
<->  1Q  <Q  w )
3 prop 7184 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
4 prmuloc2 7276 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  1Q  <Q  w )  ->  E. v  e.  ( 1st `  A ) ( v  .Q  w
)  e.  ( 2nd `  A ) )
53, 4sylan 279 . . . . 5  |-  ( ( A  e.  P.  /\  1Q  <Q  w )  ->  E. v  e.  ( 1st `  A ) ( v  .Q  w )  e.  ( 2nd `  A
) )
6 prnminu 7198 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( v  .Q  w
)  e.  ( 2nd `  A ) )  ->  E. z  e.  ( 2nd `  A ) z 
<Q  ( v  .Q  w
) )
73, 6sylan 279 . . . . . . 7  |-  ( ( A  e.  P.  /\  ( v  .Q  w
)  e.  ( 2nd `  A ) )  ->  E. z  e.  ( 2nd `  A ) z 
<Q  ( v  .Q  w
) )
87ad2ant2rl 498 . . . . . 6  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) ) )  ->  E. z  e.  ( 2nd `  A
) z  <Q  (
v  .Q  w ) )
9 simp3 951 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  z  <Q  ( v  .Q  w
) )
10 simp2l 975 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  v  e.  ( 1st `  A
) )
11 elprnql 7190 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  ( 1st `  A ) )  -> 
v  e.  Q. )
123, 11sylan 279 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  v  e.  ( 1st `  A ) )  -> 
v  e.  Q. )
1312ad2ant2r 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
14133adant3 969 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  v  e.  Q. )
15 simp1r 974 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  1Q  <Q  w )
16 ltrelnq 7074 . . . . . . . . . . . . . . . . . 18  |-  <Q  C_  ( Q.  X.  Q. )
1716brel 4529 . . . . . . . . . . . . . . . . 17  |-  ( 1Q 
<Q  w  ->  ( 1Q  e.  Q.  /\  w  e.  Q. ) )
1817simprd 113 . . . . . . . . . . . . . . . 16  |-  ( 1Q 
<Q  w  ->  w  e. 
Q. )
1915, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  w  e.  Q. )
20 recclnq 7101 . . . . . . . . . . . . . . . 16  |-  ( w  e.  Q.  ->  ( *Q `  w )  e. 
Q. )
2119, 20syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  ( *Q `  w )  e. 
Q. )
22 mulassnqg 7093 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  Q.  /\  w  e.  Q.  /\  ( *Q `  w )  e. 
Q. )  ->  (
( v  .Q  w
)  .Q  ( *Q
`  w ) )  =  ( v  .Q  ( w  .Q  ( *Q `  w ) ) ) )
2314, 19, 21, 22syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( v  .Q  w
)  .Q  ( *Q
`  w ) )  =  ( v  .Q  ( w  .Q  ( *Q `  w ) ) ) )
24 recidnq 7102 . . . . . . . . . . . . . . . 16  |-  ( w  e.  Q.  ->  (
w  .Q  ( *Q
`  w ) )  =  1Q )
2519, 24syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
w  .Q  ( *Q
`  w ) )  =  1Q )
2625oveq2d 5722 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
v  .Q  ( w  .Q  ( *Q `  w ) ) )  =  ( v  .Q  1Q ) )
27 mulidnq 7098 . . . . . . . . . . . . . . 15  |-  ( v  e.  Q.  ->  (
v  .Q  1Q )  =  v )
2814, 27syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
v  .Q  1Q )  =  v )
2923, 26, 283eqtrd 2136 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( v  .Q  w
)  .Q  ( *Q
`  w ) )  =  v )
3029eleq1d 2168 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( ( v  .Q  w )  .Q  ( *Q `  w ) )  e.  ( 1st `  A
)  <->  v  e.  ( 1st `  A ) ) )
3110, 30mpbird 166 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( v  .Q  w
)  .Q  ( *Q
`  w ) )  e.  ( 1st `  A
) )
32 ltrnqi 7130 . . . . . . . . . . . . 13  |-  ( z 
<Q  ( v  .Q  w
)  ->  ( *Q `  ( v  .Q  w
) )  <Q  ( *Q `  z ) )
33 ltmnqg 7110 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  .Q  f )  <Q  (
h  .Q  g ) ) )
3433adantl 273 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A
)  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  .Q  f ) 
<Q  ( h  .Q  g
) ) )
35 mulclnq 7085 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( v  .Q  w
)  e.  Q. )
3614, 19, 35syl2anc 406 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
v  .Q  w )  e.  Q. )
37 recclnq 7101 . . . . . . . . . . . . . . 15  |-  ( ( v  .Q  w )  e.  Q.  ->  ( *Q `  ( v  .Q  w ) )  e. 
Q. )
3836, 37syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  ( *Q `  ( v  .Q  w ) )  e. 
Q. )
3916brel 4529 . . . . . . . . . . . . . . . . 17  |-  ( z 
<Q  ( v  .Q  w
)  ->  ( z  e.  Q.  /\  ( v  .Q  w )  e. 
Q. ) )
4039simpld 111 . . . . . . . . . . . . . . . 16  |-  ( z 
<Q  ( v  .Q  w
)  ->  z  e.  Q. )
419, 40syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  z  e.  Q. )
42 recclnq 7101 . . . . . . . . . . . . . . 15  |-  ( z  e.  Q.  ->  ( *Q `  z )  e. 
Q. )
4341, 42syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  ( *Q `  z )  e. 
Q. )
44 mulcomnqg 7092 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  =  ( g  .Q  f ) )
4544adantl 273 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A
)  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  .Q  g )  =  ( g  .Q  f ) )
4634, 38, 43, 19, 45caovord2d 5872 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( *Q `  (
v  .Q  w ) )  <Q  ( *Q `  z )  <->  ( ( *Q `  ( v  .Q  w ) )  .Q  w )  <Q  (
( *Q `  z
)  .Q  w ) ) )
4732, 46syl5ib 153 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
z  <Q  ( v  .Q  w )  ->  (
( *Q `  (
v  .Q  w ) )  .Q  w ) 
<Q  ( ( *Q `  z )  .Q  w
) ) )
48 1nq 7075 . . . . . . . . . . . . . . . . 17  |-  1Q  e.  Q.
49 mulidnq 7098 . . . . . . . . . . . . . . . . 17  |-  ( 1Q  e.  Q.  ->  ( 1Q  .Q  1Q )  =  1Q )
5048, 49ax-mp 7 . . . . . . . . . . . . . . . 16  |-  ( 1Q 
.Q  1Q )  =  1Q
51 mulcomnqg 7092 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  .Q  w
)  e.  Q.  /\  ( *Q `  ( v  .Q  w ) )  e.  Q. )  -> 
( ( v  .Q  w )  .Q  ( *Q `  ( v  .Q  w ) ) )  =  ( ( *Q
`  ( v  .Q  w ) )  .Q  ( v  .Q  w
) ) )
5237, 51mpdan 415 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  .Q  w )  e.  Q.  ->  (
( v  .Q  w
)  .Q  ( *Q
`  ( v  .Q  w ) ) )  =  ( ( *Q
`  ( v  .Q  w ) )  .Q  ( v  .Q  w
) ) )
53 recidnq 7102 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  .Q  w )  e.  Q.  ->  (
( v  .Q  w
)  .Q  ( *Q
`  ( v  .Q  w ) ) )  =  1Q )
5452, 53eqtr3d 2134 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  .Q  w )  e.  Q.  ->  (
( *Q `  (
v  .Q  w ) )  .Q  ( v  .Q  w ) )  =  1Q )
5554, 24oveqan12d 5725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  .Q  w
)  e.  Q.  /\  w  e.  Q. )  ->  ( ( ( *Q
`  ( v  .Q  w ) )  .Q  ( v  .Q  w
) )  .Q  (
w  .Q  ( *Q
`  w ) ) )  =  ( 1Q 
.Q  1Q ) )
5636, 19, 55syl2anc 406 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( ( *Q `  ( v  .Q  w
) )  .Q  (
v  .Q  w ) )  .Q  ( w  .Q  ( *Q `  w ) ) )  =  ( 1Q  .Q  1Q ) )
57 mulassnqg 7093 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  .Q  g
)  .Q  h )  =  ( f  .Q  ( g  .Q  h
) ) )
5857adantl 273 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A
)  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( ( f  .Q  g )  .Q  h
)  =  ( f  .Q  ( g  .Q  h ) ) )
59 mulclnq 7085 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  e.  Q. )
6059adantl 273 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A
)  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  .Q  g )  e.  Q. )
6138, 36, 19, 45, 58, 21, 60caov4d 5887 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( ( *Q `  ( v  .Q  w
) )  .Q  (
v  .Q  w ) )  .Q  ( w  .Q  ( *Q `  w ) ) )  =  ( ( ( *Q `  ( v  .Q  w ) )  .Q  w )  .Q  ( ( v  .Q  w )  .Q  ( *Q `  w ) ) ) )
6256, 61eqtr3d 2134 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  ( 1Q  .Q  1Q )  =  ( ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  .Q  (
( v  .Q  w
)  .Q  ( *Q
`  w ) ) ) )
6350, 62syl5reqr 2147 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( ( *Q `  ( v  .Q  w
) )  .Q  w
)  .Q  ( ( v  .Q  w )  .Q  ( *Q `  w ) ) )  =  1Q )
6460, 38, 19caovcld 5856 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( *Q `  (
v  .Q  w ) )  .Q  w )  e.  Q. )
6560, 36, 21caovcld 5856 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( v  .Q  w
)  .Q  ( *Q
`  w ) )  e.  Q. )
66 recmulnqg 7100 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( *Q `  ( v  .Q  w
) )  .Q  w
)  e.  Q.  /\  ( ( v  .Q  w )  .Q  ( *Q `  w ) )  e.  Q. )  -> 
( ( *Q `  ( ( *Q `  ( v  .Q  w
) )  .Q  w
) )  =  ( ( v  .Q  w
)  .Q  ( *Q
`  w ) )  <-> 
( ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  .Q  (
( v  .Q  w
)  .Q  ( *Q
`  w ) ) )  =  1Q ) )
6764, 65, 66syl2anc 406 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( *Q `  (
( *Q `  (
v  .Q  w ) )  .Q  w ) )  =  ( ( v  .Q  w )  .Q  ( *Q `  w ) )  <->  ( (
( *Q `  (
v  .Q  w ) )  .Q  w )  .Q  ( ( v  .Q  w )  .Q  ( *Q `  w
) ) )  =  1Q ) )
6863, 67mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  ( *Q `  ( ( *Q
`  ( v  .Q  w ) )  .Q  w ) )  =  ( ( v  .Q  w )  .Q  ( *Q `  w ) ) )
6968eleq1d 2168 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( *Q `  (
( *Q `  (
v  .Q  w ) )  .Q  w ) )  e.  ( 1st `  A )  <->  ( (
v  .Q  w )  .Q  ( *Q `  w ) )  e.  ( 1st `  A
) ) )
7069biimprd 157 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( ( v  .Q  w )  .Q  ( *Q `  w ) )  e.  ( 1st `  A
)  ->  ( *Q `  ( ( *Q `  ( v  .Q  w
) )  .Q  w
) )  e.  ( 1st `  A ) ) )
71 breq1 3878 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  ->  (
y  <Q  ( ( *Q
`  z )  .Q  w )  <->  ( ( *Q `  ( v  .Q  w ) )  .Q  w )  <Q  (
( *Q `  z
)  .Q  w ) ) )
72 fveq2 5353 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  ->  ( *Q `  y )  =  ( *Q `  (
( *Q `  (
v  .Q  w ) )  .Q  w ) ) )
7372eleq1d 2168 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( ( *Q `  ( v  .Q  w
) )  .Q  w
) )  e.  ( 1st `  A ) ) )
7471, 73anbi12d 460 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  ->  (
( y  <Q  (
( *Q `  z
)  .Q  w )  /\  ( *Q `  y )  e.  ( 1st `  A ) )  <->  ( ( ( *Q `  ( v  .Q  w ) )  .Q  w )  <Q 
( ( *Q `  z )  .Q  w
)  /\  ( *Q `  ( ( *Q `  ( v  .Q  w
) )  .Q  w
) )  e.  ( 1st `  A ) ) ) )
7574spcegv 2729 . . . . . . . . . . . . . 14  |-  ( ( ( *Q `  (
v  .Q  w ) )  .Q  w )  e.  Q.  ->  (
( ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  <Q  (
( *Q `  z
)  .Q  w )  /\  ( *Q `  ( ( *Q `  ( v  .Q  w
) )  .Q  w
) )  e.  ( 1st `  A ) )  ->  E. y
( y  <Q  (
( *Q `  z
)  .Q  w )  /\  ( *Q `  y )  e.  ( 1st `  A ) ) ) )
7664, 75syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  <Q  (
( *Q `  z
)  .Q  w )  /\  ( *Q `  ( ( *Q `  ( v  .Q  w
) )  .Q  w
) )  e.  ( 1st `  A ) )  ->  E. y
( y  <Q  (
( *Q `  z
)  .Q  w )  /\  ( *Q `  y )  e.  ( 1st `  A ) ) ) )
77 recexpr.1 . . . . . . . . . . . . . 14  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
7877recexprlemelu 7332 . . . . . . . . . . . . 13  |-  ( ( ( *Q `  z
)  .Q  w )  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  ( ( *Q `  z )  .Q  w
)  /\  ( *Q `  y )  e.  ( 1st `  A ) ) )
7976, 78syl6ibr 161 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( ( ( *Q
`  ( v  .Q  w ) )  .Q  w )  <Q  (
( *Q `  z
)  .Q  w )  /\  ( *Q `  ( ( *Q `  ( v  .Q  w
) )  .Q  w
) )  e.  ( 1st `  A ) )  ->  ( ( *Q `  z )  .Q  w )  e.  ( 2nd `  B ) ) )
8047, 70, 79syl2and 291 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( z  <Q  (
v  .Q  w )  /\  ( ( v  .Q  w )  .Q  ( *Q `  w
) )  e.  ( 1st `  A ) )  ->  ( ( *Q `  z )  .Q  w )  e.  ( 2nd `  B ) ) )
819, 31, 80mp2and 427 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  (
( *Q `  z
)  .Q  w )  e.  ( 2nd `  B
) )
82 mulidnq 7098 . . . . . . . . . . . . . 14  |-  ( w  e.  Q.  ->  (
w  .Q  1Q )  =  w )
83 mulcomnqg 7092 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  Q.  /\  1Q  e.  Q. )  -> 
( w  .Q  1Q )  =  ( 1Q  .Q  w ) )
8448, 83mpan2 419 . . . . . . . . . . . . . 14  |-  ( w  e.  Q.  ->  (
w  .Q  1Q )  =  ( 1Q  .Q  w ) )
8582, 84eqtr3d 2134 . . . . . . . . . . . . 13  |-  ( w  e.  Q.  ->  w  =  ( 1Q  .Q  w ) )
8685adantl 273 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  w  =  ( 1Q 
.Q  w ) )
87 recidnq 7102 . . . . . . . . . . . . . 14  |-  ( z  e.  Q.  ->  (
z  .Q  ( *Q
`  z ) )  =  1Q )
8887oveq1d 5721 . . . . . . . . . . . . 13  |-  ( z  e.  Q.  ->  (
( z  .Q  ( *Q `  z ) )  .Q  w )  =  ( 1Q  .Q  w
) )
8988adantr 272 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( ( z  .Q  ( *Q `  z
) )  .Q  w
)  =  ( 1Q 
.Q  w ) )
90 mulassnqg 7093 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Q.  /\  ( *Q `  z )  e.  Q.  /\  w  e.  Q. )  ->  (
( z  .Q  ( *Q `  z ) )  .Q  w )  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) )
9142, 90syl3an2 1218 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
( z  .Q  ( *Q `  z ) )  .Q  w )  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) )
92913anidm12 1241 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( ( z  .Q  ( *Q `  z
) )  .Q  w
)  =  ( z  .Q  ( ( *Q
`  z )  .Q  w ) ) )
9386, 89, 923eqtr2d 2138 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  w  =  ( z  .Q  ( ( *Q
`  z )  .Q  w ) ) )
9441, 19, 93syl2anc 406 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  w  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )
95 oveq2 5714 . . . . . . . . . . . 12  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
z  .Q  x )  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )
9695eqeq2d 2111 . . . . . . . . . . 11  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
w  =  ( z  .Q  x )  <->  w  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) ) )
9796rspcev 2744 . . . . . . . . . 10  |-  ( ( ( ( *Q `  z )  .Q  w
)  e.  ( 2nd `  B )  /\  w  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )  ->  E. x  e.  ( 2nd `  B ) w  =  ( z  .Q  x ) )
9881, 94, 97syl2anc 406 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) )  /\  z  <Q 
( v  .Q  w
) )  ->  E. x  e.  ( 2nd `  B
) w  =  ( z  .Q  x ) )
99983expia 1151 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) ) )  ->  (
z  <Q  ( v  .Q  w )  ->  E. x  e.  ( 2nd `  B
) w  =  ( z  .Q  x ) ) )
10099reximdv 2492 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) ) )  ->  ( E. z  e.  ( 2nd `  A ) z 
<Q  ( v  .Q  w
)  ->  E. z  e.  ( 2nd `  A
) E. x  e.  ( 2nd `  B
) w  =  ( z  .Q  x ) ) )
10177recexprlempr 7341 . . . . . . . . 9  |-  ( A  e.  P.  ->  B  e.  P. )
102 df-imp 7178 . . . . . . . . . 10  |-  .P.  =  ( y  e.  P. ,  w  e.  P.  |->  <. { u  e.  Q.  |  E. f  e.  Q.  E. g  e.  Q.  (
f  e.  ( 1st `  y )  /\  g  e.  ( 1st `  w
)  /\  u  =  ( f  .Q  g
) ) } ,  { u  e.  Q.  |  E. f  e.  Q.  E. g  e.  Q.  (
f  e.  ( 2nd `  y )  /\  g  e.  ( 2nd `  w
)  /\  u  =  ( f  .Q  g
) ) } >. )
103102, 59genpelvu 7222 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( w  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. z  e.  ( 2nd `  A ) E. x  e.  ( 2nd `  B ) w  =  ( z  .Q  x
) ) )
104101, 103mpdan 415 . . . . . . . 8  |-  ( A  e.  P.  ->  (
w  e.  ( 2nd `  ( A  .P.  B
) )  <->  E. z  e.  ( 2nd `  A
) E. x  e.  ( 2nd `  B
) w  =  ( z  .Q  x ) ) )
105104ad2antrr 475 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) ) )  ->  (
w  e.  ( 2nd `  ( A  .P.  B
) )  <->  E. z  e.  ( 2nd `  A
) E. x  e.  ( 2nd `  B
) w  =  ( z  .Q  x ) ) )
106100, 105sylibrd 168 . . . . . 6  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) ) )  ->  ( E. z  e.  ( 2nd `  A ) z 
<Q  ( v  .Q  w
)  ->  w  e.  ( 2nd `  ( A  .P.  B ) ) ) )
1078, 106mpd 13 . . . . 5  |-  ( ( ( A  e.  P.  /\  1Q  <Q  w )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  w )  e.  ( 2nd `  A ) ) )  ->  w  e.  ( 2nd `  ( A  .P.  B ) ) )
1085, 107rexlimddv 2513 . . . 4  |-  ( ( A  e.  P.  /\  1Q  <Q  w )  ->  w  e.  ( 2nd `  ( A  .P.  B
) ) )
109108ex 114 . . 3  |-  ( A  e.  P.  ->  ( 1Q  <Q  w  ->  w  e.  ( 2nd `  ( A  .P.  B ) ) ) )
1102, 109syl5bi 151 . 2  |-  ( A  e.  P.  ->  (
w  e.  ( 2nd `  1P )  ->  w  e.  ( 2nd `  ( A  .P.  B ) ) ) )
111110ssrdv 3053 1  |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299   E.wex 1436    e. wcel 1448   {cab 2086   E.wrex 2376    C_ wss 3021   <.cop 3477   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   1stc1st 5967   2ndc2nd 5968   Q.cnq 6989   1Qc1q 6990    .Q cmq 6992   *Qcrq 6993    <Q cltq 6994   P.cnp 7000   1Pc1p 7001    .P. cmp 7003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-i1p 7176  df-imp 7178
This theorem is referenced by:  recexprlemex  7346
  Copyright terms: Public domain W3C validator