ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem8a Unicode version

Theorem 2sqlem8a 15209
Description: Lemma for 2sqlem8 15210. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem8.n  |-  ( ph  ->  N  e.  NN )
2sqlem8.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2sqlem8.1  |-  ( ph  ->  A  e.  ZZ )
2sqlem8.2  |-  ( ph  ->  B  e.  ZZ )
2sqlem8.3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
2sqlem8.4  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem8.c  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.d  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
2sqlem8a  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
Distinct variable groups:    a, b, w, x, y, z    A, a, x, y, z    x, C    ph, x, y    B, a, b, x, y    M, a, b, x, y, z    S, a, b, x, y, z    x, D    x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    A( w, b)    B( z, w)    C( y, z, w, a, b)    D( y, z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4  |-  ( ph  ->  A  e.  ZZ )
2 2sqlem8.m . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
3 eluz2b3 9669 . . . . . 6  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
42, 3sylib 122 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  M  =/=  1 ) )
54simpld 112 . . . 4  |-  ( ph  ->  M  e.  NN )
6 2sqlem8.c . . . 4  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
71, 5, 64sqlem5 12520 . . 3  |-  ( ph  ->  ( C  e.  ZZ  /\  ( ( A  -  C )  /  M
)  e.  ZZ ) )
87simpld 112 . 2  |-  ( ph  ->  C  e.  ZZ )
9 2sqlem8.2 . . . 4  |-  ( ph  ->  B  e.  ZZ )
10 2sqlem8.d . . . 4  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
119, 5, 104sqlem5 12520 . . 3  |-  ( ph  ->  ( D  e.  ZZ  /\  ( ( B  -  D )  /  M
)  e.  ZZ ) )
1211simpld 112 . 2  |-  ( ph  ->  D  e.  ZZ )
134simprd 114 . . . 4  |-  ( ph  ->  M  =/=  1 )
14 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  ( C ^ 2 )  =  0 )  ->  ( C ^ 2 )  =  0 )
151, 5, 6, 144sqlem9 12524 . . . . . . . . 9  |-  ( (
ph  /\  ( C ^ 2 )  =  0 )  ->  ( M ^ 2 )  ||  ( A ^ 2 ) )
1615ex 115 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  =  0  ->  ( M ^
2 )  ||  ( A ^ 2 ) ) )
17 eluzelz 9601 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  ZZ )
182, 17syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
19 dvdssq 12168 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
2018, 1, 19syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
2116, 20sylibrd 169 . . . . . . 7  |-  ( ph  ->  ( ( C ^
2 )  =  0  ->  M  ||  A
) )
22 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  ( D ^ 2 )  =  0 )  ->  ( D ^ 2 )  =  0 )
239, 5, 10, 224sqlem9 12524 . . . . . . . . 9  |-  ( (
ph  /\  ( D ^ 2 )  =  0 )  ->  ( M ^ 2 )  ||  ( B ^ 2 ) )
2423ex 115 . . . . . . . 8  |-  ( ph  ->  ( ( D ^
2 )  =  0  ->  ( M ^
2 )  ||  ( B ^ 2 ) ) )
25 dvdssq 12168 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  B  e.  ZZ )  ->  ( M  ||  B  <->  ( M ^ 2 ) 
||  ( B ^
2 ) ) )
2618, 9, 25syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( M  ||  B  <->  ( M ^ 2 ) 
||  ( B ^
2 ) ) )
2724, 26sylibrd 169 . . . . . . 7  |-  ( ph  ->  ( ( D ^
2 )  =  0  ->  M  ||  B
) )
28 2sqlem8.3 . . . . . . . . . . 11  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
29 1ne0 9050 . . . . . . . . . . . 12  |-  1  =/=  0
3029a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  1  =/=  0 )
3128, 30eqnetrd 2388 . . . . . . . . . 10  |-  ( ph  ->  ( A  gcd  B
)  =/=  0 )
3231neneqd 2385 . . . . . . . . 9  |-  ( ph  ->  -.  ( A  gcd  B )  =  0 )
33 gcdeq0 12114 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
341, 9, 33syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
3532, 34mtbid 673 . . . . . . . 8  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
36 dvdslegcd 12101 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( M  ||  A  /\  M  ||  B
)  ->  M  <_  ( A  gcd  B ) ) )
3718, 1, 9, 35, 36syl31anc 1252 . . . . . . 7  |-  ( ph  ->  ( ( M  ||  A  /\  M  ||  B
)  ->  M  <_  ( A  gcd  B ) ) )
3821, 27, 37syl2and 295 . . . . . 6  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  ->  M  <_  ( A  gcd  B
) ) )
3928breq2d 4041 . . . . . . 7  |-  ( ph  ->  ( M  <_  ( A  gcd  B )  <->  M  <_  1 ) )
40 nnle1eq1 9006 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M  <_  1  <->  M  = 
1 ) )
415, 40syl 14 . . . . . . 7  |-  ( ph  ->  ( M  <_  1  <->  M  =  1 ) )
4239, 41bitrd 188 . . . . . 6  |-  ( ph  ->  ( M  <_  ( A  gcd  B )  <->  M  = 
1 ) )
4338, 42sylibd 149 . . . . 5  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  ->  M  =  1 ) )
4443necon3ad 2406 . . . 4  |-  ( ph  ->  ( M  =/=  1  ->  -.  ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 ) ) )
4513, 44mpd 13 . . 3  |-  ( ph  ->  -.  ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 ) )
468zcnd 9440 . . . . 5  |-  ( ph  ->  C  e.  CC )
47 sqeq0 10673 . . . . 5  |-  ( C  e.  CC  ->  (
( C ^ 2 )  =  0  <->  C  =  0 ) )
4846, 47syl 14 . . . 4  |-  ( ph  ->  ( ( C ^
2 )  =  0  <-> 
C  =  0 ) )
4912zcnd 9440 . . . . 5  |-  ( ph  ->  D  e.  CC )
50 sqeq0 10673 . . . . 5  |-  ( D  e.  CC  ->  (
( D ^ 2 )  =  0  <->  D  =  0 ) )
5149, 50syl 14 . . . 4  |-  ( ph  ->  ( ( D ^
2 )  =  0  <-> 
D  =  0 ) )
5248, 51anbi12d 473 . . 3  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  <->  ( C  =  0  /\  D  =  0 ) ) )
5345, 52mtbid 673 . 2  |-  ( ph  ->  -.  ( C  =  0  /\  D  =  0 ) )
54 gcdn0cl 12099 . 2  |-  ( ( ( C  e.  ZZ  /\  D  e.  ZZ )  /\  -.  ( C  =  0  /\  D  =  0 ) )  ->  ( C  gcd  D )  e.  NN )
558, 12, 53, 54syl21anc 1248 1  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179    =/= wne 2364   A.wral 2472   E.wrex 2473   class class class wbr 4029    |-> cmpt 4090   ran crn 4660   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    <_ cle 8055    - cmin 8190    / cdiv 8691   NNcn 8982   2c2 9033   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    mod cmo 10393   ^cexp 10609   abscabs 11141    || cdvds 11930    gcd cgcd 12079   ZZ[_i]cgz 12507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  2sqlem8  15210
  Copyright terms: Public domain W3C validator