ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem8a Unicode version

Theorem 2sqlem8a 14930
Description: Lemma for 2sqlem8 14931. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem8.n  |-  ( ph  ->  N  e.  NN )
2sqlem8.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
2sqlem8.1  |-  ( ph  ->  A  e.  ZZ )
2sqlem8.2  |-  ( ph  ->  B  e.  ZZ )
2sqlem8.3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
2sqlem8.4  |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem8.c  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2sqlem8.d  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
2sqlem8a  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
Distinct variable groups:    a, b, w, x, y, z    A, a, x, y, z    x, C    ph, x, y    B, a, b, x, y    M, a, b, x, y, z    S, a, b, x, y, z    x, D    x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    A( w, b)    B( z, w)    C( y, z, w, a, b)    D( y, z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4  |-  ( ph  ->  A  e.  ZZ )
2 2sqlem8.m . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
3 eluz2b3 9634 . . . . . 6  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
42, 3sylib 122 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  M  =/=  1 ) )
54simpld 112 . . . 4  |-  ( ph  ->  M  e.  NN )
6 2sqlem8.c . . . 4  |-  C  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
71, 5, 64sqlem5 12414 . . 3  |-  ( ph  ->  ( C  e.  ZZ  /\  ( ( A  -  C )  /  M
)  e.  ZZ ) )
87simpld 112 . 2  |-  ( ph  ->  C  e.  ZZ )
9 2sqlem8.2 . . . 4  |-  ( ph  ->  B  e.  ZZ )
10 2sqlem8.d . . . 4  |-  D  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
119, 5, 104sqlem5 12414 . . 3  |-  ( ph  ->  ( D  e.  ZZ  /\  ( ( B  -  D )  /  M
)  e.  ZZ ) )
1211simpld 112 . 2  |-  ( ph  ->  D  e.  ZZ )
134simprd 114 . . . 4  |-  ( ph  ->  M  =/=  1 )
14 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  ( C ^ 2 )  =  0 )  ->  ( C ^ 2 )  =  0 )
151, 5, 6, 144sqlem9 12418 . . . . . . . . 9  |-  ( (
ph  /\  ( C ^ 2 )  =  0 )  ->  ( M ^ 2 )  ||  ( A ^ 2 ) )
1615ex 115 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  =  0  ->  ( M ^
2 )  ||  ( A ^ 2 ) ) )
17 eluzelz 9567 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  ZZ )
182, 17syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
19 dvdssq 12064 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  A  e.  ZZ )  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
2018, 1, 19syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( M  ||  A  <->  ( M ^ 2 ) 
||  ( A ^
2 ) ) )
2116, 20sylibrd 169 . . . . . . 7  |-  ( ph  ->  ( ( C ^
2 )  =  0  ->  M  ||  A
) )
22 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  ( D ^ 2 )  =  0 )  ->  ( D ^ 2 )  =  0 )
239, 5, 10, 224sqlem9 12418 . . . . . . . . 9  |-  ( (
ph  /\  ( D ^ 2 )  =  0 )  ->  ( M ^ 2 )  ||  ( B ^ 2 ) )
2423ex 115 . . . . . . . 8  |-  ( ph  ->  ( ( D ^
2 )  =  0  ->  ( M ^
2 )  ||  ( B ^ 2 ) ) )
25 dvdssq 12064 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  B  e.  ZZ )  ->  ( M  ||  B  <->  ( M ^ 2 ) 
||  ( B ^
2 ) ) )
2618, 9, 25syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( M  ||  B  <->  ( M ^ 2 ) 
||  ( B ^
2 ) ) )
2724, 26sylibrd 169 . . . . . . 7  |-  ( ph  ->  ( ( D ^
2 )  =  0  ->  M  ||  B
) )
28 2sqlem8.3 . . . . . . . . . . 11  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
29 1ne0 9017 . . . . . . . . . . . 12  |-  1  =/=  0
3029a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  1  =/=  0 )
3128, 30eqnetrd 2384 . . . . . . . . . 10  |-  ( ph  ->  ( A  gcd  B
)  =/=  0 )
3231neneqd 2381 . . . . . . . . 9  |-  ( ph  ->  -.  ( A  gcd  B )  =  0 )
33 gcdeq0 12010 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
341, 9, 33syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
3532, 34mtbid 673 . . . . . . . 8  |-  ( ph  ->  -.  ( A  =  0  /\  B  =  0 ) )
36 dvdslegcd 11997 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( M  ||  A  /\  M  ||  B
)  ->  M  <_  ( A  gcd  B ) ) )
3718, 1, 9, 35, 36syl31anc 1252 . . . . . . 7  |-  ( ph  ->  ( ( M  ||  A  /\  M  ||  B
)  ->  M  <_  ( A  gcd  B ) ) )
3821, 27, 37syl2and 295 . . . . . 6  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  ->  M  <_  ( A  gcd  B
) ) )
3928breq2d 4030 . . . . . . 7  |-  ( ph  ->  ( M  <_  ( A  gcd  B )  <->  M  <_  1 ) )
40 nnle1eq1 8973 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M  <_  1  <->  M  = 
1 ) )
415, 40syl 14 . . . . . . 7  |-  ( ph  ->  ( M  <_  1  <->  M  =  1 ) )
4239, 41bitrd 188 . . . . . 6  |-  ( ph  ->  ( M  <_  ( A  gcd  B )  <->  M  = 
1 ) )
4338, 42sylibd 149 . . . . 5  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  ->  M  =  1 ) )
4443necon3ad 2402 . . . 4  |-  ( ph  ->  ( M  =/=  1  ->  -.  ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 ) ) )
4513, 44mpd 13 . . 3  |-  ( ph  ->  -.  ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 ) )
468zcnd 9406 . . . . 5  |-  ( ph  ->  C  e.  CC )
47 sqeq0 10614 . . . . 5  |-  ( C  e.  CC  ->  (
( C ^ 2 )  =  0  <->  C  =  0 ) )
4846, 47syl 14 . . . 4  |-  ( ph  ->  ( ( C ^
2 )  =  0  <-> 
C  =  0 ) )
4912zcnd 9406 . . . . 5  |-  ( ph  ->  D  e.  CC )
50 sqeq0 10614 . . . . 5  |-  ( D  e.  CC  ->  (
( D ^ 2 )  =  0  <->  D  =  0 ) )
5149, 50syl 14 . . . 4  |-  ( ph  ->  ( ( D ^
2 )  =  0  <-> 
D  =  0 ) )
5248, 51anbi12d 473 . . 3  |-  ( ph  ->  ( ( ( C ^ 2 )  =  0  /\  ( D ^ 2 )  =  0 )  <->  ( C  =  0  /\  D  =  0 ) ) )
5345, 52mtbid 673 . 2  |-  ( ph  ->  -.  ( C  =  0  /\  D  =  0 ) )
54 gcdn0cl 11995 . 2  |-  ( ( ( C  e.  ZZ  /\  D  e.  ZZ )  /\  -.  ( C  =  0  /\  D  =  0 ) )  ->  ( C  gcd  D )  e.  NN )
558, 12, 53, 54syl21anc 1248 1  |-  ( ph  ->  ( C  gcd  D
)  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175    =/= wne 2360   A.wral 2468   E.wrex 2469   class class class wbr 4018    |-> cmpt 4079   ran crn 4645   ` cfv 5235  (class class class)co 5896   CCcc 7839   0cc0 7841   1c1 7842    + caddc 7844    <_ cle 8023    - cmin 8158    / cdiv 8659   NNcn 8949   2c2 9000   ZZcz 9283   ZZ>=cuz 9558   ...cfz 10038    mod cmo 10353   ^cexp 10550   abscabs 11038    || cdvds 11826    gcd cgcd 11975   ZZ[_i]cgz 12401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-sup 7013  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-dvds 11827  df-gcd 11976
This theorem is referenced by:  2sqlem8  14931
  Copyright terms: Public domain W3C validator