ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfimafn Unicode version

Theorem dfimafn 5612
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem dfimafn
StepHypRef Expression
1 dfima2 5012 . 2  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
2 ssel 3178 . . . . . 6  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
3 funbrfvb 5606 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
43ex 115 . . . . . 6  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
52, 4syl9r 73 . . . . 5  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( x  e.  A  ->  (
( F `  x
)  =  y  <->  x F
y ) ) ) )
65imp31 256 . . . 4  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
76rexbidva 2494 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( E. x  e.  A  ( F `  x )  =  y  <->  E. x  e.  A  x F y ) )
87abbidv 2314 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  ->  { y  |  E. x  e.  A  ( F `  x )  =  y }  =  { y  |  E. x  e.  A  x F y } )
91, 8eqtr4id 2248 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  ( F `  x )  =  y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476    C_ wss 3157   class class class wbr 4034   dom cdm 4664   "cima 4667   Fun wfun 5253   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267
This theorem is referenced by:  dfimafn2  5613  fvelimab  5620
  Copyright terms: Public domain W3C validator