Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsub | Unicode version |
Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nnsub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3985 | . . . . . 6 | |
2 | oveq1 5848 | . . . . . . 7 | |
3 | 2 | eleq1d 2234 | . . . . . 6 |
4 | 1, 3 | imbi12d 233 | . . . . 5 |
5 | 4 | ralbidv 2465 | . . . 4 |
6 | breq2 3985 | . . . . . 6 | |
7 | oveq1 5848 | . . . . . . 7 | |
8 | 7 | eleq1d 2234 | . . . . . 6 |
9 | 6, 8 | imbi12d 233 | . . . . 5 |
10 | 9 | ralbidv 2465 | . . . 4 |
11 | breq2 3985 | . . . . . 6 | |
12 | oveq1 5848 | . . . . . . 7 | |
13 | 12 | eleq1d 2234 | . . . . . 6 |
14 | 11, 13 | imbi12d 233 | . . . . 5 |
15 | 14 | ralbidv 2465 | . . . 4 |
16 | breq2 3985 | . . . . . 6 | |
17 | oveq1 5848 | . . . . . . 7 | |
18 | 17 | eleq1d 2234 | . . . . . 6 |
19 | 16, 18 | imbi12d 233 | . . . . 5 |
20 | 19 | ralbidv 2465 | . . . 4 |
21 | nnnlt1 8879 | . . . . . 6 | |
22 | 21 | pm2.21d 609 | . . . . 5 |
23 | 22 | rgen 2518 | . . . 4 |
24 | breq1 3984 | . . . . . . 7 | |
25 | oveq2 5849 | . . . . . . . 8 | |
26 | 25 | eleq1d 2234 | . . . . . . 7 |
27 | 24, 26 | imbi12d 233 | . . . . . 6 |
28 | 27 | cbvralv 2691 | . . . . 5 |
29 | nncn 8861 | . . . . . . . . . . . . 13 | |
30 | 29 | adantr 274 | . . . . . . . . . . . 12 |
31 | ax-1cn 7842 | . . . . . . . . . . . 12 | |
32 | pncan 8100 | . . . . . . . . . . . 12 | |
33 | 30, 31, 32 | sylancl 410 | . . . . . . . . . . 11 |
34 | simpl 108 | . . . . . . . . . . 11 | |
35 | 33, 34 | eqeltrd 2242 | . . . . . . . . . 10 |
36 | oveq2 5849 | . . . . . . . . . . 11 | |
37 | 36 | eleq1d 2234 | . . . . . . . . . 10 |
38 | 35, 37 | syl5ibrcom 156 | . . . . . . . . 9 |
39 | 38 | a1dd 48 | . . . . . . . 8 |
40 | 39 | a1dd 48 | . . . . . . 7 |
41 | breq1 3984 | . . . . . . . . . 10 | |
42 | oveq2 5849 | . . . . . . . . . . 11 | |
43 | 42 | eleq1d 2234 | . . . . . . . . . 10 |
44 | 41, 43 | imbi12d 233 | . . . . . . . . 9 |
45 | 44 | rspcv 2825 | . . . . . . . 8 |
46 | nnre 8860 | . . . . . . . . . . 11 | |
47 | nnre 8860 | . . . . . . . . . . 11 | |
48 | 1re 7894 | . . . . . . . . . . . 12 | |
49 | ltsubadd 8326 | . . . . . . . . . . . 12 | |
50 | 48, 49 | mp3an2 1315 | . . . . . . . . . . 11 |
51 | 46, 47, 50 | syl2anr 288 | . . . . . . . . . 10 |
52 | nncn 8861 | . . . . . . . . . . . 12 | |
53 | subsub3 8126 | . . . . . . . . . . . . 13 | |
54 | 31, 53 | mp3an3 1316 | . . . . . . . . . . . 12 |
55 | 29, 52, 54 | syl2an 287 | . . . . . . . . . . 11 |
56 | 55 | eleq1d 2234 | . . . . . . . . . 10 |
57 | 51, 56 | imbi12d 233 | . . . . . . . . 9 |
58 | 57 | biimpd 143 | . . . . . . . 8 |
59 | 45, 58 | syl9r 73 | . . . . . . 7 |
60 | nn1m1nn 8871 | . . . . . . . 8 | |
61 | 60 | adantl 275 | . . . . . . 7 |
62 | 40, 59, 61 | mpjaod 708 | . . . . . 6 |
63 | 62 | ralrimdva 2545 | . . . . 5 |
64 | 28, 63 | syl5bi 151 | . . . 4 |
65 | 5, 10, 15, 20, 23, 64 | nnind 8869 | . . 3 |
66 | breq1 3984 | . . . . 5 | |
67 | oveq2 5849 | . . . . . 6 | |
68 | 67 | eleq1d 2234 | . . . . 5 |
69 | 66, 68 | imbi12d 233 | . . . 4 |
70 | 69 | rspcva 2827 | . . 3 |
71 | 65, 70 | sylan2 284 | . 2 |
72 | nngt0 8878 | . . 3 | |
73 | nnre 8860 | . . . 4 | |
74 | nnre 8860 | . . . 4 | |
75 | posdif 8349 | . . . 4 | |
76 | 73, 74, 75 | syl2an 287 | . . 3 |
77 | 72, 76 | syl5ibr 155 | . 2 |
78 | 71, 77 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wral 2443 class class class wbr 3981 (class class class)co 5841 cc 7747 cr 7748 cc0 7749 c1 7750 caddc 7752 clt 7929 cmin 8065 cn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 |
This theorem is referenced by: nnsubi 8893 uz3m2nn 9507 pythagtriplem13 12204 |
Copyright terms: Public domain | W3C validator |