ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsub Unicode version

Theorem nnsub 8892
Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnsub  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <->  ( B  -  A )  e.  NN ) )

Proof of Theorem nnsub
Dummy variables  z  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3985 . . . . . 6  |-  ( x  =  1  ->  (
z  <  x  <->  z  <  1 ) )
2 oveq1 5848 . . . . . . 7  |-  ( x  =  1  ->  (
x  -  z )  =  ( 1  -  z ) )
32eleq1d 2234 . . . . . 6  |-  ( x  =  1  ->  (
( x  -  z
)  e.  NN  <->  ( 1  -  z )  e.  NN ) )
41, 3imbi12d 233 . . . . 5  |-  ( x  =  1  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  1  ->  ( 1  -  z
)  e.  NN ) ) )
54ralbidv 2465 . . . 4  |-  ( x  =  1  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  1  ->  ( 1  -  z
)  e.  NN ) ) )
6 breq2 3985 . . . . . 6  |-  ( x  =  y  ->  (
z  <  x  <->  z  <  y ) )
7 oveq1 5848 . . . . . . 7  |-  ( x  =  y  ->  (
x  -  z )  =  ( y  -  z ) )
87eleq1d 2234 . . . . . 6  |-  ( x  =  y  ->  (
( x  -  z
)  e.  NN  <->  ( y  -  z )  e.  NN ) )
96, 8imbi12d 233 . . . . 5  |-  ( x  =  y  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  y  ->  ( y  -  z
)  e.  NN ) ) )
109ralbidv 2465 . . . 4  |-  ( x  =  y  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  y  ->  ( y  -  z
)  e.  NN ) ) )
11 breq2 3985 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
z  <  x  <->  z  <  ( y  +  1 ) ) )
12 oveq1 5848 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  -  z )  =  ( ( y  +  1 )  -  z ) )
1312eleq1d 2234 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  -  z
)  e.  NN  <->  ( (
y  +  1 )  -  z )  e.  NN ) )
1411, 13imbi12d 233 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
1514ralbidv 2465 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
16 breq2 3985 . . . . . 6  |-  ( x  =  B  ->  (
z  <  x  <->  z  <  B ) )
17 oveq1 5848 . . . . . . 7  |-  ( x  =  B  ->  (
x  -  z )  =  ( B  -  z ) )
1817eleq1d 2234 . . . . . 6  |-  ( x  =  B  ->  (
( x  -  z
)  e.  NN  <->  ( B  -  z )  e.  NN ) )
1916, 18imbi12d 233 . . . . 5  |-  ( x  =  B  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  B  ->  ( B  -  z
)  e.  NN ) ) )
2019ralbidv 2465 . . . 4  |-  ( x  =  B  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  B  ->  ( B  -  z
)  e.  NN ) ) )
21 nnnlt1 8879 . . . . . 6  |-  ( z  e.  NN  ->  -.  z  <  1 )
2221pm2.21d 609 . . . . 5  |-  ( z  e.  NN  ->  (
z  <  1  ->  ( 1  -  z )  e.  NN ) )
2322rgen 2518 . . . 4  |-  A. z  e.  NN  ( z  <  1  ->  ( 1  -  z )  e.  NN )
24 breq1 3984 . . . . . . 7  |-  ( z  =  x  ->  (
z  <  y  <->  x  <  y ) )
25 oveq2 5849 . . . . . . . 8  |-  ( z  =  x  ->  (
y  -  z )  =  ( y  -  x ) )
2625eleq1d 2234 . . . . . . 7  |-  ( z  =  x  ->  (
( y  -  z
)  e.  NN  <->  ( y  -  x )  e.  NN ) )
2724, 26imbi12d 233 . . . . . 6  |-  ( z  =  x  ->  (
( z  <  y  ->  ( y  -  z
)  e.  NN )  <-> 
( x  <  y  ->  ( y  -  x
)  e.  NN ) ) )
2827cbvralv 2691 . . . . 5  |-  ( A. z  e.  NN  (
z  <  y  ->  ( y  -  z )  e.  NN )  <->  A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN ) )
29 nncn 8861 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
3029adantr 274 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  y  e.  CC )
31 ax-1cn 7842 . . . . . . . . . . . 12  |-  1  e.  CC
32 pncan 8100 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
3330, 31, 32sylancl 410 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( y  +  1 )  -  1 )  =  y )
34 simpl 108 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  y  e.  NN )
3533, 34eqeltrd 2242 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( y  +  1 )  -  1 )  e.  NN )
36 oveq2 5849 . . . . . . . . . . 11  |-  ( z  =  1  ->  (
( y  +  1 )  -  z )  =  ( ( y  +  1 )  - 
1 ) )
3736eleq1d 2234 . . . . . . . . . 10  |-  ( z  =  1  ->  (
( ( y  +  1 )  -  z
)  e.  NN  <->  ( (
y  +  1 )  -  1 )  e.  NN ) )
3835, 37syl5ibrcom 156 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  ->  ( ( y  +  1 )  -  z )  e.  NN ) )
3938a1dd 48 . . . . . . . 8  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) )
4039a1dd 48 . . . . . . 7  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  ->  ( A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN )  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) ) )
41 breq1 3984 . . . . . . . . . 10  |-  ( x  =  ( z  - 
1 )  ->  (
x  <  y  <->  ( z  -  1 )  < 
y ) )
42 oveq2 5849 . . . . . . . . . . 11  |-  ( x  =  ( z  - 
1 )  ->  (
y  -  x )  =  ( y  -  ( z  -  1 ) ) )
4342eleq1d 2234 . . . . . . . . . 10  |-  ( x  =  ( z  - 
1 )  ->  (
( y  -  x
)  e.  NN  <->  ( y  -  ( z  - 
1 ) )  e.  NN ) )
4441, 43imbi12d 233 . . . . . . . . 9  |-  ( x  =  ( z  - 
1 )  ->  (
( x  <  y  ->  ( y  -  x
)  e.  NN )  <-> 
( ( z  - 
1 )  <  y  ->  ( y  -  (
z  -  1 ) )  e.  NN ) ) )
4544rspcv 2825 . . . . . . . 8  |-  ( ( z  -  1 )  e.  NN  ->  ( A. x  e.  NN  ( x  <  y  -> 
( y  -  x
)  e.  NN )  ->  ( ( z  -  1 )  < 
y  ->  ( y  -  ( z  - 
1 ) )  e.  NN ) ) )
46 nnre 8860 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  RR )
47 nnre 8860 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  RR )
48 1re 7894 . . . . . . . . . . . 12  |-  1  e.  RR
49 ltsubadd 8326 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  1  e.  RR  /\  y  e.  RR )  ->  (
( z  -  1 )  <  y  <->  z  <  ( y  +  1 ) ) )
5048, 49mp3an2 1315 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( ( z  - 
1 )  <  y  <->  z  <  ( y  +  1 ) ) )
5146, 47, 50syl2anr 288 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  - 
1 )  <  y  <->  z  <  ( y  +  1 ) ) )
52 nncn 8861 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  e.  CC )
53 subsub3 8126 . . . . . . . . . . . . 13  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  1  e.  CC )  ->  (
y  -  ( z  -  1 ) )  =  ( ( y  +  1 )  -  z ) )
5431, 53mp3an3 1316 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( y  -  (
z  -  1 ) )  =  ( ( y  +  1 )  -  z ) )
5529, 52, 54syl2an 287 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( y  -  (
z  -  1 ) )  =  ( ( y  +  1 )  -  z ) )
5655eleq1d 2234 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( y  -  ( z  -  1 ) )  e.  NN  <->  ( ( y  +  1 )  -  z )  e.  NN ) )
5751, 56imbi12d 233 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( ( z  -  1 )  < 
y  ->  ( y  -  ( z  - 
1 ) )  e.  NN )  <->  ( z  <  ( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) )
5857biimpd 143 . . . . . . . 8  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( ( z  -  1 )  < 
y  ->  ( y  -  ( z  - 
1 ) )  e.  NN )  ->  (
z  <  ( y  +  1 )  -> 
( ( y  +  1 )  -  z
)  e.  NN ) ) )
5945, 58syl9r 73 . . . . . . 7  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  - 
1 )  e.  NN  ->  ( A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN )  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) ) )
60 nn1m1nn 8871 . . . . . . . 8  |-  ( z  e.  NN  ->  (
z  =  1  \/  ( z  -  1 )  e.  NN ) )
6160adantl 275 . . . . . . 7  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  \/  ( z  - 
1 )  e.  NN ) )
6240, 59, 61mpjaod 708 . . . . . 6  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN )  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) )
6362ralrimdva 2545 . . . . 5  |-  ( y  e.  NN  ->  ( A. x  e.  NN  ( x  <  y  -> 
( y  -  x
)  e.  NN )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
6428, 63syl5bi 151 . . . 4  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  ( y  -  z
)  e.  NN )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
655, 10, 15, 20, 23, 64nnind 8869 . . 3  |-  ( B  e.  NN  ->  A. z  e.  NN  ( z  < 
B  ->  ( B  -  z )  e.  NN ) )
66 breq1 3984 . . . . 5  |-  ( z  =  A  ->  (
z  <  B  <->  A  <  B ) )
67 oveq2 5849 . . . . . 6  |-  ( z  =  A  ->  ( B  -  z )  =  ( B  -  A ) )
6867eleq1d 2234 . . . . 5  |-  ( z  =  A  ->  (
( B  -  z
)  e.  NN  <->  ( B  -  A )  e.  NN ) )
6966, 68imbi12d 233 . . . 4  |-  ( z  =  A  ->  (
( z  <  B  ->  ( B  -  z
)  e.  NN )  <-> 
( A  <  B  ->  ( B  -  A
)  e.  NN ) ) )
7069rspcva 2827 . . 3  |-  ( ( A  e.  NN  /\  A. z  e.  NN  (
z  <  B  ->  ( B  -  z )  e.  NN ) )  ->  ( A  < 
B  ->  ( B  -  A )  e.  NN ) )
7165, 70sylan2 284 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  ->  ( B  -  A
)  e.  NN ) )
72 nngt0 8878 . . 3  |-  ( ( B  -  A )  e.  NN  ->  0  <  ( B  -  A
) )
73 nnre 8860 . . . 4  |-  ( A  e.  NN  ->  A  e.  RR )
74 nnre 8860 . . . 4  |-  ( B  e.  NN  ->  B  e.  RR )
75 posdif 8349 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
7673, 74, 75syl2an 287 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
7772, 76syl5ibr 155 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( B  -  A )  e.  NN  ->  A  <  B ) )
7871, 77impbid 128 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <->  ( B  -  A )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   A.wral 2443   class class class wbr 3981  (class class class)co 5841   CCcc 7747   RRcr 7748   0cc0 7749   1c1 7750    + caddc 7752    < clt 7929    - cmin 8065   NNcn 8853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-inn 8854
This theorem is referenced by:  nnsubi  8893  uz3m2nn  9507  pythagtriplem13  12204
  Copyright terms: Public domain W3C validator