| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsub | Unicode version | ||
| Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4048 |
. . . . . 6
| |
| 2 | oveq1 5951 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2274 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | ralbidv 2506 |
. . . 4
|
| 6 | breq2 4048 |
. . . . . 6
| |
| 7 | oveq1 5951 |
. . . . . . 7
| |
| 8 | 7 | eleq1d 2274 |
. . . . . 6
|
| 9 | 6, 8 | imbi12d 234 |
. . . . 5
|
| 10 | 9 | ralbidv 2506 |
. . . 4
|
| 11 | breq2 4048 |
. . . . . 6
| |
| 12 | oveq1 5951 |
. . . . . . 7
| |
| 13 | 12 | eleq1d 2274 |
. . . . . 6
|
| 14 | 11, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | ralbidv 2506 |
. . . 4
|
| 16 | breq2 4048 |
. . . . . 6
| |
| 17 | oveq1 5951 |
. . . . . . 7
| |
| 18 | 17 | eleq1d 2274 |
. . . . . 6
|
| 19 | 16, 18 | imbi12d 234 |
. . . . 5
|
| 20 | 19 | ralbidv 2506 |
. . . 4
|
| 21 | nnnlt1 9062 |
. . . . . 6
| |
| 22 | 21 | pm2.21d 620 |
. . . . 5
|
| 23 | 22 | rgen 2559 |
. . . 4
|
| 24 | breq1 4047 |
. . . . . . 7
| |
| 25 | oveq2 5952 |
. . . . . . . 8
| |
| 26 | 25 | eleq1d 2274 |
. . . . . . 7
|
| 27 | 24, 26 | imbi12d 234 |
. . . . . 6
|
| 28 | 27 | cbvralv 2738 |
. . . . 5
|
| 29 | nncn 9044 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | adantr 276 |
. . . . . . . . . . . 12
|
| 31 | ax-1cn 8018 |
. . . . . . . . . . . 12
| |
| 32 | pncan 8278 |
. . . . . . . . . . . 12
| |
| 33 | 30, 31, 32 | sylancl 413 |
. . . . . . . . . . 11
|
| 34 | simpl 109 |
. . . . . . . . . . 11
| |
| 35 | 33, 34 | eqeltrd 2282 |
. . . . . . . . . 10
|
| 36 | oveq2 5952 |
. . . . . . . . . . 11
| |
| 37 | 36 | eleq1d 2274 |
. . . . . . . . . 10
|
| 38 | 35, 37 | syl5ibrcom 157 |
. . . . . . . . 9
|
| 39 | 38 | a1dd 48 |
. . . . . . . 8
|
| 40 | 39 | a1dd 48 |
. . . . . . 7
|
| 41 | breq1 4047 |
. . . . . . . . . 10
| |
| 42 | oveq2 5952 |
. . . . . . . . . . 11
| |
| 43 | 42 | eleq1d 2274 |
. . . . . . . . . 10
|
| 44 | 41, 43 | imbi12d 234 |
. . . . . . . . 9
|
| 45 | 44 | rspcv 2873 |
. . . . . . . 8
|
| 46 | nnre 9043 |
. . . . . . . . . . 11
| |
| 47 | nnre 9043 |
. . . . . . . . . . 11
| |
| 48 | 1re 8071 |
. . . . . . . . . . . 12
| |
| 49 | ltsubadd 8505 |
. . . . . . . . . . . 12
| |
| 50 | 48, 49 | mp3an2 1338 |
. . . . . . . . . . 11
|
| 51 | 46, 47, 50 | syl2anr 290 |
. . . . . . . . . 10
|
| 52 | nncn 9044 |
. . . . . . . . . . . 12
| |
| 53 | subsub3 8304 |
. . . . . . . . . . . . 13
| |
| 54 | 31, 53 | mp3an3 1339 |
. . . . . . . . . . . 12
|
| 55 | 29, 52, 54 | syl2an 289 |
. . . . . . . . . . 11
|
| 56 | 55 | eleq1d 2274 |
. . . . . . . . . 10
|
| 57 | 51, 56 | imbi12d 234 |
. . . . . . . . 9
|
| 58 | 57 | biimpd 144 |
. . . . . . . 8
|
| 59 | 45, 58 | syl9r 73 |
. . . . . . 7
|
| 60 | nn1m1nn 9054 |
. . . . . . . 8
| |
| 61 | 60 | adantl 277 |
. . . . . . 7
|
| 62 | 40, 59, 61 | mpjaod 720 |
. . . . . 6
|
| 63 | 62 | ralrimdva 2586 |
. . . . 5
|
| 64 | 28, 63 | biimtrid 152 |
. . . 4
|
| 65 | 5, 10, 15, 20, 23, 64 | nnind 9052 |
. . 3
|
| 66 | breq1 4047 |
. . . . 5
| |
| 67 | oveq2 5952 |
. . . . . 6
| |
| 68 | 67 | eleq1d 2274 |
. . . . 5
|
| 69 | 66, 68 | imbi12d 234 |
. . . 4
|
| 70 | 69 | rspcva 2875 |
. . 3
|
| 71 | 65, 70 | sylan2 286 |
. 2
|
| 72 | nngt0 9061 |
. . 3
| |
| 73 | nnre 9043 |
. . . 4
| |
| 74 | nnre 9043 |
. . . 4
| |
| 75 | posdif 8528 |
. . . 4
| |
| 76 | 73, 74, 75 | syl2an 289 |
. . 3
|
| 77 | 72, 76 | imbitrrid 156 |
. 2
|
| 78 | 71, 77 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 |
| This theorem is referenced by: nnsubi 9076 uz3m2nn 9694 pythagtriplem13 12599 perfectlem1 15471 |
| Copyright terms: Public domain | W3C validator |