| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnsub | Unicode version | ||
| Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) | 
| Ref | Expression | 
|---|---|
| nnsub | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 4037 | 
. . . . . 6
 | |
| 2 | oveq1 5929 | 
. . . . . . 7
 | |
| 3 | 2 | eleq1d 2265 | 
. . . . . 6
 | 
| 4 | 1, 3 | imbi12d 234 | 
. . . . 5
 | 
| 5 | 4 | ralbidv 2497 | 
. . . 4
 | 
| 6 | breq2 4037 | 
. . . . . 6
 | |
| 7 | oveq1 5929 | 
. . . . . . 7
 | |
| 8 | 7 | eleq1d 2265 | 
. . . . . 6
 | 
| 9 | 6, 8 | imbi12d 234 | 
. . . . 5
 | 
| 10 | 9 | ralbidv 2497 | 
. . . 4
 | 
| 11 | breq2 4037 | 
. . . . . 6
 | |
| 12 | oveq1 5929 | 
. . . . . . 7
 | |
| 13 | 12 | eleq1d 2265 | 
. . . . . 6
 | 
| 14 | 11, 13 | imbi12d 234 | 
. . . . 5
 | 
| 15 | 14 | ralbidv 2497 | 
. . . 4
 | 
| 16 | breq2 4037 | 
. . . . . 6
 | |
| 17 | oveq1 5929 | 
. . . . . . 7
 | |
| 18 | 17 | eleq1d 2265 | 
. . . . . 6
 | 
| 19 | 16, 18 | imbi12d 234 | 
. . . . 5
 | 
| 20 | 19 | ralbidv 2497 | 
. . . 4
 | 
| 21 | nnnlt1 9016 | 
. . . . . 6
 | |
| 22 | 21 | pm2.21d 620 | 
. . . . 5
 | 
| 23 | 22 | rgen 2550 | 
. . . 4
 | 
| 24 | breq1 4036 | 
. . . . . . 7
 | |
| 25 | oveq2 5930 | 
. . . . . . . 8
 | |
| 26 | 25 | eleq1d 2265 | 
. . . . . . 7
 | 
| 27 | 24, 26 | imbi12d 234 | 
. . . . . 6
 | 
| 28 | 27 | cbvralv 2729 | 
. . . . 5
 | 
| 29 | nncn 8998 | 
. . . . . . . . . . . . 13
 | |
| 30 | 29 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 31 | ax-1cn 7972 | 
. . . . . . . . . . . 12
 | |
| 32 | pncan 8232 | 
. . . . . . . . . . . 12
 | |
| 33 | 30, 31, 32 | sylancl 413 | 
. . . . . . . . . . 11
 | 
| 34 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 35 | 33, 34 | eqeltrd 2273 | 
. . . . . . . . . 10
 | 
| 36 | oveq2 5930 | 
. . . . . . . . . . 11
 | |
| 37 | 36 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 38 | 35, 37 | syl5ibrcom 157 | 
. . . . . . . . 9
 | 
| 39 | 38 | a1dd 48 | 
. . . . . . . 8
 | 
| 40 | 39 | a1dd 48 | 
. . . . . . 7
 | 
| 41 | breq1 4036 | 
. . . . . . . . . 10
 | |
| 42 | oveq2 5930 | 
. . . . . . . . . . 11
 | |
| 43 | 42 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 44 | 41, 43 | imbi12d 234 | 
. . . . . . . . 9
 | 
| 45 | 44 | rspcv 2864 | 
. . . . . . . 8
 | 
| 46 | nnre 8997 | 
. . . . . . . . . . 11
 | |
| 47 | nnre 8997 | 
. . . . . . . . . . 11
 | |
| 48 | 1re 8025 | 
. . . . . . . . . . . 12
 | |
| 49 | ltsubadd 8459 | 
. . . . . . . . . . . 12
 | |
| 50 | 48, 49 | mp3an2 1336 | 
. . . . . . . . . . 11
 | 
| 51 | 46, 47, 50 | syl2anr 290 | 
. . . . . . . . . 10
 | 
| 52 | nncn 8998 | 
. . . . . . . . . . . 12
 | |
| 53 | subsub3 8258 | 
. . . . . . . . . . . . 13
 | |
| 54 | 31, 53 | mp3an3 1337 | 
. . . . . . . . . . . 12
 | 
| 55 | 29, 52, 54 | syl2an 289 | 
. . . . . . . . . . 11
 | 
| 56 | 55 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 57 | 51, 56 | imbi12d 234 | 
. . . . . . . . 9
 | 
| 58 | 57 | biimpd 144 | 
. . . . . . . 8
 | 
| 59 | 45, 58 | syl9r 73 | 
. . . . . . 7
 | 
| 60 | nn1m1nn 9008 | 
. . . . . . . 8
 | |
| 61 | 60 | adantl 277 | 
. . . . . . 7
 | 
| 62 | 40, 59, 61 | mpjaod 719 | 
. . . . . 6
 | 
| 63 | 62 | ralrimdva 2577 | 
. . . . 5
 | 
| 64 | 28, 63 | biimtrid 152 | 
. . . 4
 | 
| 65 | 5, 10, 15, 20, 23, 64 | nnind 9006 | 
. . 3
 | 
| 66 | breq1 4036 | 
. . . . 5
 | |
| 67 | oveq2 5930 | 
. . . . . 6
 | |
| 68 | 67 | eleq1d 2265 | 
. . . . 5
 | 
| 69 | 66, 68 | imbi12d 234 | 
. . . 4
 | 
| 70 | 69 | rspcva 2866 | 
. . 3
 | 
| 71 | 65, 70 | sylan2 286 | 
. 2
 | 
| 72 | nngt0 9015 | 
. . 3
 | |
| 73 | nnre 8997 | 
. . . 4
 | |
| 74 | nnre 8997 | 
. . . 4
 | |
| 75 | posdif 8482 | 
. . . 4
 | |
| 76 | 73, 74, 75 | syl2an 289 | 
. . 3
 | 
| 77 | 72, 76 | imbitrrid 156 | 
. 2
 | 
| 78 | 71, 77 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 | 
| This theorem is referenced by: nnsubi 9030 uz3m2nn 9647 pythagtriplem13 12445 perfectlem1 15235 | 
| Copyright terms: Public domain | W3C validator |