ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass3 Unicode version

Theorem funimass3 5678
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5677 would be the special case of  A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )

Proof of Theorem funimass3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funimass4 5611 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2 ssel 3177 . . . . . 6  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
3 fvimacnv 5677 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  B  <->  x  e.  ( `' F " B ) ) )
43ex 115 . . . . . 6  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  e.  B  <->  x  e.  ( `' F " B ) ) ) )
52, 4syl9r 73 . . . . 5  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( x  e.  A  ->  (
( F `  x
)  e.  B  <->  x  e.  ( `' F " B ) ) ) ) )
65imp31 256 . . . 4  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( ( F `  x )  e.  B  <->  x  e.  ( `' F " B ) ) )
76ralbidva 2493 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  e.  B  <->  A. x  e.  A  x  e.  ( `' F " B ) ) )
81, 7bitrd 188 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  x  e.  ( `' F " B ) ) )
9 dfss3 3173 . 2  |-  ( A 
C_  ( `' F " B )  <->  A. x  e.  A  x  e.  ( `' F " B ) )
108, 9bitr4di 198 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   A.wral 2475    C_ wss 3157   `'ccnv 4662   dom cdm 4663   "cima 4666   Fun wfun 5252   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  funimass5  5679  funconstss  5680  fimacnv  5691  iscnp3  14439  cnpnei  14455  cncnp  14466
  Copyright terms: Public domain W3C validator