Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funimass3 | Unicode version |
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5600 would be the special case of being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4 5537 | . . 3 | |
2 | ssel 3136 | . . . . . 6 | |
3 | fvimacnv 5600 | . . . . . . 7 | |
4 | 3 | ex 114 | . . . . . 6 |
5 | 2, 4 | syl9r 73 | . . . . 5 |
6 | 5 | imp31 254 | . . . 4 |
7 | 6 | ralbidva 2462 | . . 3 |
8 | 1, 7 | bitrd 187 | . 2 |
9 | dfss3 3132 | . 2 | |
10 | 8, 9 | bitr4di 197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wral 2444 wss 3116 ccnv 4603 cdm 4604 cima 4607 wfun 5182 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: funimass5 5602 funconstss 5603 fimacnv 5614 iscnp3 12843 cnpnei 12859 cncnp 12870 |
Copyright terms: Public domain | W3C validator |