ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpeq1d Unicode version

Theorem tpeq1d 3693
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypothesis
Ref Expression
tpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
tpeq1d  |-  ( ph  ->  { A ,  C ,  D }  =  { B ,  C ,  D } )

Proof of Theorem tpeq1d
StepHypRef Expression
1 tpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 tpeq1 3690 . 2  |-  ( A  =  B  ->  { A ,  C ,  D }  =  { B ,  C ,  D } )
31, 2syl 14 1  |-  ( ph  ->  { A ,  C ,  D }  =  { B ,  C ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363   {ctp 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-tp 3612
This theorem is referenced by:  tpeq123d  3696
  Copyright terms: Public domain W3C validator