ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpeq3 Unicode version

Theorem tpeq3 3558
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq3  |-  ( A  =  B  ->  { C ,  D ,  A }  =  { C ,  D ,  B } )

Proof of Theorem tpeq3
StepHypRef Expression
1 sneq 3485 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21uneq2d 3177 . 2  |-  ( A  =  B  ->  ( { C ,  D }  u.  { A } )  =  ( { C ,  D }  u.  { B } ) )
3 df-tp 3482 . 2  |-  { C ,  D ,  A }  =  ( { C ,  D }  u.  { A } )
4 df-tp 3482 . 2  |-  { C ,  D ,  B }  =  ( { C ,  D }  u.  { B } )
52, 3, 43eqtr4g 2157 1  |-  ( A  =  B  ->  { C ,  D ,  A }  =  { C ,  D ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    u. cun 3019   {csn 3474   {cpr 3475   {ctp 3476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-sn 3480  df-tp 3482
This theorem is referenced by:  tpeq3d  3561  tppreq3  3573  fztpval  9704
  Copyright terms: Public domain W3C validator