ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpeq3 Unicode version

Theorem tpeq3 3710
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq3  |-  ( A  =  B  ->  { C ,  D ,  A }  =  { C ,  D ,  B } )

Proof of Theorem tpeq3
StepHypRef Expression
1 sneq 3633 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21uneq2d 3317 . 2  |-  ( A  =  B  ->  ( { C ,  D }  u.  { A } )  =  ( { C ,  D }  u.  { B } ) )
3 df-tp 3630 . 2  |-  { C ,  D ,  A }  =  ( { C ,  D }  u.  { A } )
4 df-tp 3630 . 2  |-  { C ,  D ,  B }  =  ( { C ,  D }  u.  { B } )
52, 3, 43eqtr4g 2254 1  |-  ( A  =  B  ->  { C ,  D ,  A }  =  { C ,  D ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3155   {csn 3622   {cpr 3623   {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-tp 3630
This theorem is referenced by:  tpeq3d  3713  tppreq3  3725  fztpval  10158
  Copyright terms: Public domain W3C validator