ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpeq1d GIF version

Theorem tpeq1d 3665
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypothesis
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
tpeq1d (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})

Proof of Theorem tpeq1d
StepHypRef Expression
1 tpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 tpeq1 3662 . 2 (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
31, 2syl 14 1 (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by:  tpeq123d  3668
  Copyright terms: Public domain W3C validator