ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpeq1d GIF version

Theorem tpeq1d 3726
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypothesis
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
tpeq1d (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})

Proof of Theorem tpeq1d
StepHypRef Expression
1 tpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 tpeq1 3723 . 2 (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
31, 2syl 14 1 (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  {ctp 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3643  df-pr 3644  df-tp 3645
This theorem is referenced by:  tpeq123d  3729
  Copyright terms: Public domain W3C validator