Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-pr | Unicode version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so as proven by prcom 3659. For a more traditional definition, but requiring a dummy variable, see dfpr2 3602. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | cB | . . 3 | |
3 | 1, 2 | cpr 3584 | . 2 |
4 | 1 | csn 3583 | . . 3 |
5 | 2 | csn 3583 | . . 3 |
6 | 4, 5 | cun 3119 | . 2 |
7 | 3, 6 | wceq 1348 | 1 |
Colors of variables: wff set class |
This definition is referenced by: dfsn2 3597 dfpr2 3602 ralprg 3634 rexprg 3635 disjpr2 3647 prcom 3659 preq1 3660 qdass 3680 qdassr 3681 tpidm12 3682 prprc1 3691 difprsn1 3719 diftpsn3 3721 difpr 3722 snsspr1 3728 snsspr2 3729 prss 3736 prssg 3737 iunxprg 3953 2ordpr 4508 xpsspw 4723 dmpropg 5083 rnpropg 5090 funprg 5248 funtp 5251 fntpg 5254 f1oprg 5486 fnimapr 5556 fpr 5678 fprg 5679 fmptpr 5688 fvpr1 5700 fvpr1g 5702 fvpr2g 5703 df2o3 6409 enpr2d 6795 unfiexmid 6895 prfidisj 6904 pr2nelem 7168 xp2dju 7192 fzosplitprm1 10190 hashprg 10743 sumpr 11376 strle2g 12509 bdcpr 13906 |
Copyright terms: Public domain | W3C validator |