Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-pr | Unicode version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so as proven by prcom 3665. For a more traditional definition, but requiring a dummy variable, see dfpr2 3608. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | cB | . . 3 | |
3 | 1, 2 | cpr 3590 | . 2 |
4 | 1 | csn 3589 | . . 3 |
5 | 2 | csn 3589 | . . 3 |
6 | 4, 5 | cun 3125 | . 2 |
7 | 3, 6 | wceq 1353 | 1 |
Colors of variables: wff set class |
This definition is referenced by: dfsn2 3603 dfpr2 3608 ralprg 3640 rexprg 3641 disjpr2 3653 prcom 3665 preq1 3666 qdass 3686 qdassr 3687 tpidm12 3688 prprc1 3697 difprsn1 3728 diftpsn3 3730 difpr 3731 snsspr1 3737 snsspr2 3738 prss 3745 prssg 3746 iunxprg 3962 2ordpr 4517 xpsspw 4732 dmpropg 5093 rnpropg 5100 funprg 5258 funtp 5261 fntpg 5264 f1oprg 5497 fnimapr 5568 fpr 5690 fprg 5691 fmptpr 5700 fvpr1 5712 fvpr1g 5714 fvpr2g 5715 df2o3 6421 enpr2d 6807 unfiexmid 6907 prfidisj 6916 pr2nelem 7180 xp2dju 7204 fzosplitprm1 10204 hashprg 10756 sumpr 11389 strle2g 12531 bdcpr 14192 |
Copyright terms: Public domain | W3C validator |