| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-pr | Unicode version | ||
| Description: Define unordered pair of
classes. Definition 7.1 of [Quine] p. 48. They
are unordered, so |
| Ref | Expression |
|---|---|
| df-pr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | 1, 2 | cpr 3634 |
. 2
|
| 4 | 1 | csn 3633 |
. . 3
|
| 5 | 2 | csn 3633 |
. . 3
|
| 6 | 4, 5 | cun 3164 |
. 2
|
| 7 | 3, 6 | wceq 1373 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: dfsn2 3647 dfpr2 3652 ralprg 3684 rexprg 3685 disjpr2 3697 prcom 3709 preq1 3710 qdass 3730 qdassr 3731 tpidm12 3732 prprc1 3741 difprsn1 3772 diftpsn3 3774 difpr 3775 snsspr1 3781 snsspr2 3782 prss 3789 prssg 3790 iunxprg 4008 2ordpr 4573 xpsspw 4788 dmpropg 5156 rnpropg 5163 funprg 5325 funtp 5328 fntpg 5331 f1oprg 5568 fnimapr 5641 fpr 5768 fprg 5769 fmptpr 5778 fvpr1 5790 fvpr1g 5792 fvpr2g 5793 df2o3 6518 enpr2d 6913 unfiexmid 7017 prfidisj 7026 tpfidceq 7029 pr2nelem 7301 xp2dju 7329 fzosplitprm1 10365 hashprg 10955 sumpr 11757 strle2g 12972 perfectlem2 15505 bdcpr 15844 |
| Copyright terms: Public domain | W3C validator |