| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-pr | Unicode version | ||
| Description: Define unordered pair of
classes. Definition 7.1 of [Quine] p. 48. They
are unordered, so |
| Ref | Expression |
|---|---|
| df-pr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | 1, 2 | cpr 3624 |
. 2
|
| 4 | 1 | csn 3623 |
. . 3
|
| 5 | 2 | csn 3623 |
. . 3
|
| 6 | 4, 5 | cun 3155 |
. 2
|
| 7 | 3, 6 | wceq 1364 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: dfsn2 3637 dfpr2 3642 ralprg 3674 rexprg 3675 disjpr2 3687 prcom 3699 preq1 3700 qdass 3720 qdassr 3721 tpidm12 3722 prprc1 3731 difprsn1 3762 diftpsn3 3764 difpr 3765 snsspr1 3771 snsspr2 3772 prss 3779 prssg 3780 iunxprg 3998 2ordpr 4561 xpsspw 4776 dmpropg 5143 rnpropg 5150 funprg 5309 funtp 5312 fntpg 5315 f1oprg 5551 fnimapr 5624 fpr 5747 fprg 5748 fmptpr 5757 fvpr1 5769 fvpr1g 5771 fvpr2g 5772 df2o3 6497 enpr2d 6885 unfiexmid 6988 prfidisj 6997 tpfidceq 7000 pr2nelem 7270 xp2dju 7298 fzosplitprm1 10327 hashprg 10917 sumpr 11595 strle2g 12810 perfectlem2 15320 bdcpr 15601 |
| Copyright terms: Public domain | W3C validator |