ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vdif0im Unicode version

Theorem vdif0im 3512
Description: Universal class equality in terms of empty difference. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
vdif0im  |-  ( A  =  _V  ->  ( _V  \  A )  =  (/) )

Proof of Theorem vdif0im
StepHypRef Expression
1 vss 3494 . 2  |-  ( _V  C_  A  <->  A  =  _V )
2 ssdif0im 3511 . 2  |-  ( _V  C_  A  ->  ( _V 
\  A )  =  (/) )
31, 2sylbir 135 1  |-  ( A  =  _V  ->  ( _V  \  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2760    \ cdif 3150    C_ wss 3153   (/)c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator