ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vss Unicode version

Theorem vss 3494
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
vss  |-  ( _V  C_  A  <->  A  =  _V )

Proof of Theorem vss
StepHypRef Expression
1 ssv 3201 . . 3  |-  A  C_  _V
21biantrur 303 . 2  |-  ( _V  C_  A  <->  ( A  C_  _V  /\  _V  C_  A
) )
3 eqss 3194 . 2  |-  ( A  =  _V  <->  ( A  C_ 
_V  /\  _V  C_  A
) )
42, 3bitr4i 187 1  |-  ( _V  C_  A  <->  A  =  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   _Vcvv 2760    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-in 3159  df-ss 3166
This theorem is referenced by:  vdif0im  3512
  Copyright terms: Public domain W3C validator