Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difrab0eqim | Unicode version |
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Jim Kingdon, 3-Aug-2018.) |
Ref | Expression |
---|---|
difrab0eqim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabeq 3228 | . 2 | |
2 | ssdif0im 3472 | . 2 | |
3 | 1, 2 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 crab 2447 cdif 3112 wss 3115 c0 3408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-v 2727 df-dif 3117 df-in 3121 df-ss 3128 df-nul 3409 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |