ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrab0eqim Unicode version

Theorem difrab0eqim 3474
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
difrab0eqim  |-  ( V  =  { x  e.  V  |  ph }  ->  ( V  \  {
x  e.  V  |  ph } )  =  (/) )
Distinct variable group:    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem difrab0eqim
StepHypRef Expression
1 ssrabeq 3228 . 2  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
2 ssdif0im 3472 . 2  |-  ( V 
C_  { x  e.  V  |  ph }  ->  ( V  \  {
x  e.  V  |  ph } )  =  (/) )
31, 2sylbir 134 1  |-  ( V  =  { x  e.  V  |  ph }  ->  ( V  \  {
x  e.  V  |  ph } )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   {crab 2447    \ cdif 3112    C_ wss 3115   (/)c0 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rab 2452  df-v 2727  df-dif 3117  df-in 3121  df-ss 3128  df-nul 3409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator