ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vdif0im GIF version

Theorem vdif0im 3557
Description: Universal class equality in terms of empty difference. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
vdif0im (𝐴 = V → (V ∖ 𝐴) = ∅)

Proof of Theorem vdif0im
StepHypRef Expression
1 vss 3539 . 2 (V ⊆ 𝐴𝐴 = V)
2 ssdif0im 3556 . 2 (V ⊆ 𝐴 → (V ∖ 𝐴) = ∅)
31, 2sylbir 135 1 (𝐴 = V → (V ∖ 𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  Vcvv 2799  cdif 3194  wss 3197  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator