![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vdif0im | GIF version |
Description: Universal class equality in terms of empty difference. (Contributed by Jim Kingdon, 3-Aug-2018.) |
Ref | Expression |
---|---|
vdif0im | ⊢ (𝐴 = V → (V ∖ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vss 3376 | . 2 ⊢ (V ⊆ 𝐴 ↔ 𝐴 = V) | |
2 | ssdif0im 3393 | . 2 ⊢ (V ⊆ 𝐴 → (V ∖ 𝐴) = ∅) | |
3 | 1, 2 | sylbir 134 | 1 ⊢ (𝐴 = V → (V ∖ 𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 Vcvv 2657 ∖ cdif 3034 ⊆ wss 3037 ∅c0 3329 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-dif 3039 df-in 3043 df-ss 3050 df-nul 3330 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |