ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m Unicode version

Theorem vn0m 3458
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m  |-  E. x  x  e.  _V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2763 . 2  |-  x  e. 
_V
2 19.8a 1601 . 2  |-  ( x  e.  _V  ->  E. x  x  e.  _V )
31, 2ax-mp 5 1  |-  E. x  x  e.  _V
Colors of variables: wff set class
Syntax hints:   E.wex 1503    e. wcel 2164   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  relrelss  5192  imasaddfnlemg  12897
  Copyright terms: Public domain W3C validator