![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vn0m | Unicode version |
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.) |
Ref | Expression |
---|---|
vn0m |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2644 |
. 2
![]() ![]() ![]() ![]() | |
2 | 19.8a 1537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-v 2643 |
This theorem is referenced by: relrelss 5001 |
Copyright terms: Public domain | W3C validator |