ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m Unicode version

Theorem vn0m 3462
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m  |-  E. x  x  e.  _V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2766 . 2  |-  x  e. 
_V
2 19.8a 1604 . 2  |-  ( x  e.  _V  ->  E. x  x  e.  _V )
31, 2ax-mp 5 1  |-  E. x  x  e.  _V
Colors of variables: wff set class
Syntax hints:   E.wex 1506    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  relrelss  5196  imasaddfnlemg  12957
  Copyright terms: Public domain W3C validator