ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m Unicode version

Theorem vn0m 3435
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m  |-  E. x  x  e.  _V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2741 . 2  |-  x  e. 
_V
2 19.8a 1590 . 2  |-  ( x  e.  _V  ->  E. x  x  e.  _V )
31, 2ax-mp 5 1  |-  E. x  x  e.  _V
Colors of variables: wff set class
Syntax hints:   E.wex 1492    e. wcel 2148   _Vcvv 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2740
This theorem is referenced by:  relrelss  5156  imasaddfnlemg  12735
  Copyright terms: Public domain W3C validator