ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss Unicode version

Theorem relrelss 5196
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4670 . . 3  |-  ( Rel 
dom  A  <->  dom  A  C_  ( _V  X.  _V ) )
21anbi2i 457 . 2  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V )
) )
3 relssdmrn 5190 . . . 4  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
4 ssv 3205 . . . . 5  |-  ran  A  C_ 
_V
5 xpss12 4770 . . . . 5  |-  ( ( dom  A  C_  ( _V  X.  _V )  /\  ran  A  C_  _V )  ->  ( dom  A  X.  ran  A )  C_  (
( _V  X.  _V )  X.  _V ) )
64, 5mpan2 425 . . . 4  |-  ( dom 
A  C_  ( _V  X.  _V )  ->  ( dom  A  X.  ran  A
)  C_  ( ( _V  X.  _V )  X. 
_V ) )
73, 6sylan9ss 3196 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  ->  A  C_  ( ( _V  X.  _V )  X.  _V )
)
8 xpss 4771 . . . . . 6  |-  ( ( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
9 sstr 3191 . . . . . 6  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
)  ->  A  C_  ( _V  X.  _V ) )
108, 9mpan2 425 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  A  C_  ( _V  X.  _V ) )
11 df-rel 4670 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1210, 11sylibr 134 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  Rel  A )
13 dmss 4865 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  dom  ( ( _V  X.  _V )  X.  _V )
)
14 vn0m 3462 . . . . . 6  |-  E. x  x  e.  _V
15 dmxpm 4886 . . . . . 6  |-  ( E. x  x  e.  _V  ->  dom  ( ( _V 
X.  _V )  X.  _V )  =  ( _V  X.  _V ) )
1614, 15ax-mp 5 . . . . 5  |-  dom  (
( _V  X.  _V )  X.  _V )  =  ( _V  X.  _V )
1713, 16sseqtrdi 3231 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  ( _V  X.  _V ) )
1812, 17jca 306 . . 3  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V ) ) )
197, 18impbii 126 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
202, 19bitri 184 1  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    C_ wss 3157    X. cxp 4661   dom cdm 4663   ran crn 4664   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  dftpos3  6320  tpostpos2  6323
  Copyright terms: Public domain W3C validator