ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss Unicode version

Theorem relrelss 5228
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4700 . . 3  |-  ( Rel 
dom  A  <->  dom  A  C_  ( _V  X.  _V ) )
21anbi2i 457 . 2  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V )
) )
3 relssdmrn 5222 . . . 4  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
4 ssv 3223 . . . . 5  |-  ran  A  C_ 
_V
5 xpss12 4800 . . . . 5  |-  ( ( dom  A  C_  ( _V  X.  _V )  /\  ran  A  C_  _V )  ->  ( dom  A  X.  ran  A )  C_  (
( _V  X.  _V )  X.  _V ) )
64, 5mpan2 425 . . . 4  |-  ( dom 
A  C_  ( _V  X.  _V )  ->  ( dom  A  X.  ran  A
)  C_  ( ( _V  X.  _V )  X. 
_V ) )
73, 6sylan9ss 3214 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  ->  A  C_  ( ( _V  X.  _V )  X.  _V )
)
8 xpss 4801 . . . . . 6  |-  ( ( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
9 sstr 3209 . . . . . 6  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
)  ->  A  C_  ( _V  X.  _V ) )
108, 9mpan2 425 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  A  C_  ( _V  X.  _V ) )
11 df-rel 4700 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1210, 11sylibr 134 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  Rel  A )
13 dmss 4896 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  dom  ( ( _V  X.  _V )  X.  _V )
)
14 vn0m 3480 . . . . . 6  |-  E. x  x  e.  _V
15 dmxpm 4917 . . . . . 6  |-  ( E. x  x  e.  _V  ->  dom  ( ( _V 
X.  _V )  X.  _V )  =  ( _V  X.  _V ) )
1614, 15ax-mp 5 . . . . 5  |-  dom  (
( _V  X.  _V )  X.  _V )  =  ( _V  X.  _V )
1713, 16sseqtrdi 3249 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  ( _V  X.  _V ) )
1812, 17jca 306 . . 3  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V ) ) )
197, 18impbii 126 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
202, 19bitri 184 1  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776    C_ wss 3174    X. cxp 4691   dom cdm 4693   ran crn 4694   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  dftpos3  6371  tpostpos2  6374
  Copyright terms: Public domain W3C validator