ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss Unicode version

Theorem relrelss 5137
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4618 . . 3  |-  ( Rel 
dom  A  <->  dom  A  C_  ( _V  X.  _V ) )
21anbi2i 454 . 2  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V )
) )
3 relssdmrn 5131 . . . 4  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
4 ssv 3169 . . . . 5  |-  ran  A  C_ 
_V
5 xpss12 4718 . . . . 5  |-  ( ( dom  A  C_  ( _V  X.  _V )  /\  ran  A  C_  _V )  ->  ( dom  A  X.  ran  A )  C_  (
( _V  X.  _V )  X.  _V ) )
64, 5mpan2 423 . . . 4  |-  ( dom 
A  C_  ( _V  X.  _V )  ->  ( dom  A  X.  ran  A
)  C_  ( ( _V  X.  _V )  X. 
_V ) )
73, 6sylan9ss 3160 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  ->  A  C_  ( ( _V  X.  _V )  X.  _V )
)
8 xpss 4719 . . . . . 6  |-  ( ( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
9 sstr 3155 . . . . . 6  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
)  ->  A  C_  ( _V  X.  _V ) )
108, 9mpan2 423 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  A  C_  ( _V  X.  _V ) )
11 df-rel 4618 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1210, 11sylibr 133 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  Rel  A )
13 dmss 4810 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  dom  ( ( _V  X.  _V )  X.  _V )
)
14 vn0m 3426 . . . . . 6  |-  E. x  x  e.  _V
15 dmxpm 4831 . . . . . 6  |-  ( E. x  x  e.  _V  ->  dom  ( ( _V 
X.  _V )  X.  _V )  =  ( _V  X.  _V ) )
1614, 15ax-mp 5 . . . . 5  |-  dom  (
( _V  X.  _V )  X.  _V )  =  ( _V  X.  _V )
1713, 16sseqtrdi 3195 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  ( _V  X.  _V ) )
1812, 17jca 304 . . 3  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V ) ) )
197, 18impbii 125 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
202, 19bitri 183 1  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730    C_ wss 3121    X. cxp 4609   dom cdm 4611   ran crn 4612   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  dftpos3  6241  tpostpos2  6244
  Copyright terms: Public domain W3C validator