ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrelss Unicode version

Theorem relrelss 5023
Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
relrelss  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )

Proof of Theorem relrelss
StepHypRef Expression
1 df-rel 4506 . . 3  |-  ( Rel 
dom  A  <->  dom  A  C_  ( _V  X.  _V ) )
21anbi2i 450 . 2  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V )
) )
3 relssdmrn 5017 . . . 4  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
4 ssv 3085 . . . . 5  |-  ran  A  C_ 
_V
5 xpss12 4606 . . . . 5  |-  ( ( dom  A  C_  ( _V  X.  _V )  /\  ran  A  C_  _V )  ->  ( dom  A  X.  ran  A )  C_  (
( _V  X.  _V )  X.  _V ) )
64, 5mpan2 419 . . . 4  |-  ( dom 
A  C_  ( _V  X.  _V )  ->  ( dom  A  X.  ran  A
)  C_  ( ( _V  X.  _V )  X. 
_V ) )
73, 6sylan9ss 3076 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  ->  A  C_  ( ( _V  X.  _V )  X.  _V )
)
8 xpss 4607 . . . . . 6  |-  ( ( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
9 sstr 3071 . . . . . 6  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( _V  X.  _V )
)  ->  A  C_  ( _V  X.  _V ) )
108, 9mpan2 419 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  A  C_  ( _V  X.  _V ) )
11 df-rel 4506 . . . . 5  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1210, 11sylibr 133 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  Rel  A )
13 dmss 4698 . . . . 5  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  dom  ( ( _V  X.  _V )  X.  _V )
)
14 vn0m 3340 . . . . . 6  |-  E. x  x  e.  _V
15 dmxpm 4719 . . . . . 6  |-  ( E. x  x  e.  _V  ->  dom  ( ( _V 
X.  _V )  X.  _V )  =  ( _V  X.  _V ) )
1614, 15ax-mp 7 . . . . 5  |-  dom  (
( _V  X.  _V )  X.  _V )  =  ( _V  X.  _V )
1713, 16syl6sseq 3111 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  dom  A  C_  ( _V  X.  _V ) )
1812, 17jca 302 . . 3  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( Rel  A  /\  dom  A  C_  ( _V  X.  _V ) ) )
197, 18impbii 125 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  ( _V  X.  _V ) )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
202, 19bitri 183 1  |-  ( ( Rel  A  /\  Rel  dom 
A )  <->  A  C_  (
( _V  X.  _V )  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1314   E.wex 1451    e. wcel 1463   _Vcvv 2657    C_ wss 3037    X. cxp 4497   dom cdm 4499   ran crn 4500   Rel wrel 4504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505  df-rel 4506  df-cnv 4507  df-dm 4509  df-rn 4510
This theorem is referenced by:  dftpos3  6113  tpostpos2  6116
  Copyright terms: Public domain W3C validator