ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0 Unicode version

Theorem vn0 3425
Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
vn0  |-  _V  =/=  (/)

Proof of Theorem vn0
StepHypRef Expression
1 vex 2733 . 2  |-  x  e. 
_V
2 ne0i 3421 . 2  |-  ( x  e.  _V  ->  _V  =/=  (/) )
31, 2ax-mp 5 1  |-  _V  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2141    =/= wne 2340   _Vcvv 2730   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator