| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vn0m | GIF version | ||
| Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.) |
| Ref | Expression |
|---|---|
| vn0m | ⊢ ∃𝑥 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 19.8a 1613 | . 2 ⊢ (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1515 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: relrelss 5209 imasaddfnlemg 13146 |
| Copyright terms: Public domain | W3C validator |