ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m GIF version

Theorem vn0m 3472
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m 𝑥 𝑥 ∈ V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2775 . 2 𝑥 ∈ V
2 19.8a 1613 . 2 (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V)
31, 2ax-mp 5 1 𝑥 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wex 1515  wcel 2176  Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  relrelss  5209  imasaddfnlemg  13146
  Copyright terms: Public domain W3C validator