![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vn0m | GIF version |
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.) |
Ref | Expression |
---|---|
vn0m | ⊢ ∃𝑥 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2759 | . 2 ⊢ 𝑥 ∈ V | |
2 | 19.8a 1601 | . 2 ⊢ (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∃wex 1503 ∈ wcel 2160 Vcvv 2756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2758 |
This theorem is referenced by: relrelss 5180 imasaddfnlemg 12871 |
Copyright terms: Public domain | W3C validator |