ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m GIF version

Theorem vn0m 3401
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m 𝑥 𝑥 ∈ V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2712 . 2 𝑥 ∈ V
2 19.8a 1567 . 2 (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V)
31, 2ax-mp 5 1 𝑥 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wex 1469  wcel 2125  Vcvv 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-v 2711
This theorem is referenced by:  relrelss  5105
  Copyright terms: Public domain W3C validator