ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m GIF version

Theorem vn0m 3454
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m 𝑥 𝑥 ∈ V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2759 . 2 𝑥 ∈ V
2 19.8a 1601 . 2 (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V)
31, 2ax-mp 5 1 𝑥 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wex 1503  wcel 2160  Vcvv 2756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-v 2758
This theorem is referenced by:  relrelss  5180  imasaddfnlemg  12871
  Copyright terms: Public domain W3C validator