ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m GIF version

Theorem vn0m 3420
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m 𝑥 𝑥 ∈ V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2729 . 2 𝑥 ∈ V
2 19.8a 1578 . 2 (𝑥 ∈ V → ∃𝑥 𝑥 ∈ V)
31, 2ax-mp 5 1 𝑥 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wex 1480  wcel 2136  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  relrelss  5130
  Copyright terms: Public domain W3C validator