Proof of Theorem ceqsalt
Step | Hyp | Ref
| Expression |
1 | | elisset 2740 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
2 | 1 | 3ad2ant3 1010 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → ∃𝑥 𝑥 = 𝐴) |
3 | | biimp 117 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
4 | 3 | imim3i 61 |
. . . . . 6
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓))) |
5 | 4 | al2imi 1446 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
6 | 5 | 3ad2ant2 1009 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
7 | | 19.23t 1665 |
. . . . 5
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
8 | 7 | 3ad2ant1 1008 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
9 | 6, 8 | sylibd 148 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
10 | 2, 9 | mpid 42 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) |
11 | | biimpr 129 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
12 | 11 | imim2i 12 |
. . . . . 6
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜓 → 𝜑))) |
13 | 12 | com23 78 |
. . . . 5
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → (𝑥 = 𝐴 → 𝜑))) |
14 | 13 | alimi 1443 |
. . . 4
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑))) |
15 | 14 | 3ad2ant2 1009 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → ∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑))) |
16 | | 19.21t 1570 |
. . . 4
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
17 | 16 | 3ad2ant1 1008 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
18 | 15, 17 | mpbid 146 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
19 | 10, 18 | impbid 128 |
1
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |