ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciegft GIF version

Theorem sbciegft 3008
Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3009.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbciegft ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegft
StepHypRef Expression
1 sbc5 3001 . . 3 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
2 biimp 118 . . . . . . . 8 ((𝜑𝜓) → (𝜑𝜓))
32imim2i 12 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
43impd 254 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) → 𝜓))
54alimi 1466 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓))
6 19.23t 1688 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥((𝑥 = 𝐴𝜑) → 𝜓) ↔ (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓)))
76biimpa 296 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓)) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
85, 7sylan2 286 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
983adant1 1017 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
101, 9biimtrid 152 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
11 biimpr 130 . . . . . . . 8 ((𝜑𝜓) → (𝜓𝜑))
1211imim2i 12 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
1312com23 78 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → (𝑥 = 𝐴𝜑)))
1413alimi 1466 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
15 19.21t 1593 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
1615biimpa 296 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1714, 16sylan2 286 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
18173adant1 1017 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
19 sbc6g 3002 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
20193ad2ant1 1020 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2118, 20sylibrd 169 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓[𝐴 / 𝑥]𝜑))
2210, 21impbid 129 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wnf 1471  wex 1503  wcel 2160  [wsbc 2977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-sbc 2978
This theorem is referenced by:  sbciegf  3009  sbciedf  3013
  Copyright terms: Public domain W3C validator