Proof of Theorem sbciegft
Step | Hyp | Ref
| Expression |
1 | | sbc5 2978 |
. . 3
⊢
([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
2 | | biimp 117 |
. . . . . . . 8
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
3 | 2 | imim2i 12 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜑 → 𝜓))) |
4 | 3 | impd 252 |
. . . . . 6
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ((𝑥 = 𝐴 ∧ 𝜑) → 𝜓)) |
5 | 4 | alimi 1448 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥((𝑥 = 𝐴 ∧ 𝜑) → 𝜓)) |
6 | | 19.23t 1670 |
. . . . . 6
⊢
(Ⅎ𝑥𝜓 → (∀𝑥((𝑥 = 𝐴 ∧ 𝜑) → 𝜓) ↔ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓))) |
7 | 6 | biimpa 294 |
. . . . 5
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥((𝑥 = 𝐴 ∧ 𝜑) → 𝜓)) → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓)) |
8 | 5, 7 | sylan2 284 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓)) |
9 | 8 | 3adant1 1010 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓)) |
10 | 1, 9 | syl5bi 151 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 → 𝜓)) |
11 | | biimpr 129 |
. . . . . . . 8
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
12 | 11 | imim2i 12 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜓 → 𝜑))) |
13 | 12 | com23 78 |
. . . . . 6
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → (𝑥 = 𝐴 → 𝜑))) |
14 | 13 | alimi 1448 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑))) |
15 | | 19.21t 1575 |
. . . . . 6
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
16 | 15 | biimpa 294 |
. . . . 5
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
17 | 14, 16 | sylan2 284 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
18 | 17 | 3adant1 1010 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
19 | | sbc6g 2979 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
20 | 19 | 3ad2ant1 1013 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
21 | 18, 20 | sylibrd 168 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → [𝐴 / 𝑥]𝜑)) |
22 | 10, 21 | impbid 128 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |