ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbciegft GIF version

Theorem sbciegft 2981
Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 2982.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbciegft ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegft
StepHypRef Expression
1 sbc5 2974 . . 3 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
2 biimp 117 . . . . . . . 8 ((𝜑𝜓) → (𝜑𝜓))
32imim2i 12 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
43impd 252 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) → 𝜓))
54alimi 1443 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓))
6 19.23t 1665 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥((𝑥 = 𝐴𝜑) → 𝜓) ↔ (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓)))
76biimpa 294 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓)) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
85, 7sylan2 284 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
983adant1 1005 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
101, 9syl5bi 151 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
11 biimpr 129 . . . . . . . 8 ((𝜑𝜓) → (𝜓𝜑))
1211imim2i 12 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
1312com23 78 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → (𝑥 = 𝐴𝜑)))
1413alimi 1443 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
15 19.21t 1570 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
1615biimpa 294 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1714, 16sylan2 284 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
18173adant1 1005 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
19 sbc6g 2975 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
20193ad2ant1 1008 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2118, 20sylibrd 168 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓[𝐴 / 𝑥]𝜑))
2210, 21impbid 128 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wal 1341   = wceq 1343  wnf 1448  wex 1480  wcel 2136  [wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by:  sbciegf  2982  sbciedf  2986
  Copyright terms: Public domain W3C validator