Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.41vv | GIF version |
Description: Theorem 19.41 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 30-Apr-1995.) |
Ref | Expression |
---|---|
19.41vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1890 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ 𝜓)) | |
2 | 1 | exbii 1593 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜓)) |
3 | 19.41v 1890 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.41vvv 1892 rabxp 4641 rexiunxp 4746 mpomptx 5933 xpassen 6796 dmaddpqlem 7318 nqpi 7319 nqnq0pi 7379 nq0nn 7383 |
Copyright terms: Public domain | W3C validator |