ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabga GIF version

Theorem eloprabga 6055
Description: The law of concretion for operation class abstraction. Compare elopab 4322. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
eloprabga.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
Assertion
Ref Expression
eloprabga ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem eloprabga
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 2788 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 2788 . 2 (𝐵𝑊𝐵 ∈ V)
3 elex 2788 . 2 (𝐶𝑋𝐶 ∈ V)
4 opexg 4290 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
5 opexg 4290 . . . . 5 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V)
64, 5sylan 283 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V)
763impa 1197 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V)
8 simpr 110 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
98eqeq1d 2216 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
10 eqcom 2209 . . . . . . . . . . 11 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
11 vex 2779 . . . . . . . . . . . 12 𝑥 ∈ V
12 vex 2779 . . . . . . . . . . . 12 𝑦 ∈ V
13 vex 2779 . . . . . . . . . . . 12 𝑧 ∈ V
1411, 12, 13otth2 4303 . . . . . . . . . . 11 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
1510, 14bitri 184 . . . . . . . . . 10 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
169, 15bitrdi 196 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶)))
1716anbi1d 465 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑)))
18 eloprabga.1 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
1918pm5.32i 454 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓))
2017, 19bitrdi 196 . . . . . . 7 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
21203exbidv 1893 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
22 df-oprab 5971 . . . . . . . . . 10 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2322eleq2i 2274 . . . . . . . . 9 (𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝑤 ∈ {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)})
24 abid 2195 . . . . . . . . 9 (𝑤 ∈ {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
2523, 24bitr2i 185 . . . . . . . 8 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ 𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
26 eleq1 2270 . . . . . . . 8 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (𝑤 ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
2725, 26bitrid 192 . . . . . . 7 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
2827adantl 277 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
29 19.41vvv 1929 . . . . . . . 8 (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓))
30 elisset 2791 . . . . . . . . . . 11 (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴)
31 elisset 2791 . . . . . . . . . . 11 (𝐵 ∈ V → ∃𝑦 𝑦 = 𝐵)
32 elisset 2791 . . . . . . . . . . 11 (𝐶 ∈ V → ∃𝑧 𝑧 = 𝐶)
3330, 31, 323anim123i 1187 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
34 eeeanv 1962 . . . . . . . . . 10 (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
3533, 34sylibr 134 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
3635biantrurd 305 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝜓 ↔ (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓)))
3729, 36bitr4id 199 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ 𝜓))
3837adantr 276 . . . . . 6 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (∃𝑥𝑦𝑧((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝜓) ↔ 𝜓))
3921, 28, 383bitr3d 218 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
4039expcom 116 . . . 4 (𝑤 = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓)))
4140vtocleg 2851 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V → ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓)))
427, 41mpcom 36 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
431, 2, 3, 42syl3an 1292 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2178  {cab 2193  Vcvv 2776  cop 3646  {coprab 5968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-oprab 5971
This theorem is referenced by:  eloprabg  6056  ovigg  6089
  Copyright terms: Public domain W3C validator