ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2exf GIF version

Theorem r2exf 2528
Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1 𝑦𝐴
Assertion
Ref Expression
r2exf (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem r2exf
StepHypRef Expression
1 df-rex 2494 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
2 r2alf.1 . . . . . 6 𝑦𝐴
32nfcri 2346 . . . . 5 𝑦 𝑥𝐴
4319.42 1714 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
5 anass 401 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
65exbii 1631 . . . 4 (∃𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
7 df-rex 2494 . . . . 5 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
87anbi2i 457 . . . 4 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
94, 6, 83bitr4i 212 . . 3 (∃𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
109exbii 1631 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
111, 10bitr4i 187 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1518  wcel 2180  wnfc 2339  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494
This theorem is referenced by:  r2ex  2530  rexcomf  2673
  Copyright terms: Public domain W3C validator