ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2exf GIF version

Theorem r2exf 2495
Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1 𝑦𝐴
Assertion
Ref Expression
r2exf (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem r2exf
StepHypRef Expression
1 df-rex 2461 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
2 r2alf.1 . . . . . 6 𝑦𝐴
32nfcri 2313 . . . . 5 𝑦 𝑥𝐴
4319.42 1688 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
5 anass 401 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
65exbii 1605 . . . 4 (∃𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
7 df-rex 2461 . . . . 5 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
87anbi2i 457 . . . 4 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
94, 6, 83bitr4i 212 . . 3 (∃𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
109exbii 1605 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
111, 10bitr4i 187 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1492  wcel 2148  wnfc 2306  wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461
This theorem is referenced by:  r2ex  2497  rexcomf  2639
  Copyright terms: Public domain W3C validator