| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r2exf | GIF version | ||
| Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| r2alf.1 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| r2exf | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2494 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | |
| 2 | r2alf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 3 | 2 | nfcri 2346 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 4 | 3 | 19.42 1714 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 5 | anass 401 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) | |
| 6 | 5 | exbii 1631 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 7 | df-rex 2494 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 8 | 7 | anbi2i 457 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
| 9 | 4, 6, 8 | 3bitr4i 212 | . . 3 ⊢ (∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
| 10 | 9 | exbii 1631 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
| 11 | 1, 10 | bitr4i 187 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1518 ∈ wcel 2180 Ⅎwnfc 2339 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 |
| This theorem is referenced by: r2ex 2530 rexcomf 2673 |
| Copyright terms: Public domain | W3C validator |