![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spc2gv | GIF version |
Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
spc2egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc2gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2753 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | elisset 2753 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
3 | 1, 2 | anim12i 338 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
4 | eeanv 1932 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
5 | 3, 4 | sylibr 134 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
6 | spc2egv.1 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
7 | 6 | biimpcd 159 | . . . . 5 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
8 | 7 | 2alimi 1456 | . . . 4 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
9 | exim 1599 | . . . . 5 ⊢ (∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓) → (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) | |
10 | 9 | alimi 1455 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓) → ∀𝑥(∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) |
11 | exim 1599 | . . . 4 ⊢ (∀𝑥(∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓) → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) | |
12 | 8, 10, 11 | 3syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) |
13 | 19.9v 1871 | . . . 4 ⊢ (∃𝑥∃𝑦𝜓 ↔ ∃𝑦𝜓) | |
14 | 19.9v 1871 | . . . 4 ⊢ (∃𝑦𝜓 ↔ 𝜓) | |
15 | 13, 14 | bitri 184 | . . 3 ⊢ (∃𝑥∃𝑦𝜓 ↔ 𝜓) |
16 | 12, 15 | imbitrdi 161 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
17 | 5, 16 | syl5com 29 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 |
This theorem is referenced by: rspc2gv 2855 trel 4110 exmidundif 4208 exmidundifim 4209 elovmpo 6074 cnmpt12 13872 cnmpt22 13879 exmidsbthrlem 14855 |
Copyright terms: Public domain | W3C validator |