ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2gv GIF version

Theorem spc2gv 2830
Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
spc2egv.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2gv ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem spc2gv
StepHypRef Expression
1 elisset 2753 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 2753 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
31, 2anim12i 338 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
4 eeanv 1932 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
53, 4sylibr 134 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
6 spc2egv.1 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
76biimpcd 159 . . . . 5 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓))
872alimi 1456 . . . 4 (∀𝑥𝑦𝜑 → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓))
9 exim 1599 . . . . 5 (∀𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓) → (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑦𝜓))
109alimi 1455 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝜓) → ∀𝑥(∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑦𝜓))
11 exim 1599 . . . 4 (∀𝑥(∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑦𝜓) → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜓))
128, 10, 113syl 17 . . 3 (∀𝑥𝑦𝜑 → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜓))
13 19.9v 1871 . . . 4 (∃𝑥𝑦𝜓 ↔ ∃𝑦𝜓)
14 19.9v 1871 . . . 4 (∃𝑦𝜓𝜓)
1513, 14bitri 184 . . 3 (∃𝑥𝑦𝜓𝜓)
1612, 15imbitrdi 161 . 2 (∀𝑥𝑦𝜑 → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → 𝜓))
175, 16syl5com 29 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑦𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  rspc2gv  2855  trel  4110  exmidundif  4208  exmidundifim  4209  elovmpo  6074  cnmpt12  13872  cnmpt22  13879  exmidsbthrlem  14855
  Copyright terms: Public domain W3C validator