| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc2gv | GIF version | ||
| Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| spc2egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spc2gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2785 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | elisset 2785 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
| 3 | 1, 2 | anim12i 338 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
| 4 | eeanv 1959 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
| 5 | 3, 4 | sylibr 134 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 6 | spc2egv.1 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | biimpcd 159 | . . . . 5 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
| 8 | 7 | 2alimi 1478 | . . . 4 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
| 9 | exim 1621 | . . . . 5 ⊢ (∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓) → (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) | |
| 10 | 9 | alimi 1477 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓) → ∀𝑥(∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) |
| 11 | exim 1621 | . . . 4 ⊢ (∀𝑥(∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓) → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) | |
| 12 | 8, 10, 11 | 3syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) |
| 13 | 19.9v 1893 | . . . 4 ⊢ (∃𝑥∃𝑦𝜓 ↔ ∃𝑦𝜓) | |
| 14 | 19.9v 1893 | . . . 4 ⊢ (∃𝑦𝜓 ↔ 𝜓) | |
| 15 | 13, 14 | bitri 184 | . . 3 ⊢ (∃𝑥∃𝑦𝜓 ↔ 𝜓) |
| 16 | 12, 15 | imbitrdi 161 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
| 17 | 5, 16 | syl5com 29 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1370 = wceq 1372 ∃wex 1514 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: rspc2gv 2888 trel 4148 exmidundif 4249 exmidundifim 4250 elovmpo 6144 seqf1oglem2 10663 seqf1og 10664 cnmpt12 14730 cnmpt22 14737 exmidsbthrlem 15923 |
| Copyright terms: Public domain | W3C validator |