Proof of Theorem spc2gv
Step | Hyp | Ref
| Expression |
1 | | elisset 2740 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
2 | | elisset 2740 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) |
3 | 1, 2 | anim12i 336 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
4 | | eeanv 1920 |
. . 3
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
5 | 3, 4 | sylibr 133 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
6 | | spc2egv.1 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
7 | 6 | biimpcd 158 |
. . . . 5
⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
8 | 7 | 2alimi 1444 |
. . . 4
⊢
(∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
9 | | exim 1587 |
. . . . 5
⊢
(∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓) → (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) |
10 | 9 | alimi 1443 |
. . . 4
⊢
(∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓) → ∀𝑥(∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) |
11 | | exim 1587 |
. . . 4
⊢
(∀𝑥(∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓) → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) |
12 | 8, 10, 11 | 3syl 17 |
. . 3
⊢
(∀𝑥∀𝑦𝜑 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) |
13 | | 19.9v 1859 |
. . . 4
⊢
(∃𝑥∃𝑦𝜓 ↔ ∃𝑦𝜓) |
14 | | 19.9v 1859 |
. . . 4
⊢
(∃𝑦𝜓 ↔ 𝜓) |
15 | 13, 14 | bitri 183 |
. . 3
⊢
(∃𝑥∃𝑦𝜓 ↔ 𝜓) |
16 | 12, 15 | syl6ib 160 |
. 2
⊢
(∀𝑥∀𝑦𝜑 → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
17 | 5, 16 | syl5com 29 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥∀𝑦𝜑 → 𝜓)) |