Proof of Theorem spc3gv
Step | Hyp | Ref
| Expression |
1 | | elisset 2740 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
2 | | elisset 2740 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) |
3 | | elisset 2740 |
. . . 4
⊢ (𝐶 ∈ 𝑋 → ∃𝑧 𝑧 = 𝐶) |
4 | 1, 2, 3 | 3anim123i 1174 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶)) |
5 | | eeeanv 1921 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶)) |
6 | 4, 5 | sylibr 133 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) |
7 | | spc3egv.1 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
8 | 7 | biimpcd 158 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜓)) |
9 | 8 | 2alimi 1444 |
. . . . . 6
⊢
(∀𝑦∀𝑧𝜑 → ∀𝑦∀𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜓)) |
10 | 9 | alimi 1443 |
. . . . 5
⊢
(∀𝑥∀𝑦∀𝑧𝜑 → ∀𝑥∀𝑦∀𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜓)) |
11 | | exim 1587 |
. . . . . 6
⊢
(∀𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜓) → (∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑧𝜓)) |
12 | 11 | 2alimi 1444 |
. . . . 5
⊢
(∀𝑥∀𝑦∀𝑧((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜓) → ∀𝑥∀𝑦(∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑧𝜓)) |
13 | 10, 12 | syl 14 |
. . . 4
⊢
(∀𝑥∀𝑦∀𝑧𝜑 → ∀𝑥∀𝑦(∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑧𝜓)) |
14 | | exim 1587 |
. . . . 5
⊢
(∀𝑦(∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑧𝜓) → (∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑦∃𝑧𝜓)) |
15 | 14 | alimi 1443 |
. . . 4
⊢
(∀𝑥∀𝑦(∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑧𝜓) → ∀𝑥(∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑦∃𝑧𝜓)) |
16 | | exim 1587 |
. . . 4
⊢
(∀𝑥(∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑦∃𝑧𝜓) → (∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑥∃𝑦∃𝑧𝜓)) |
17 | 13, 15, 16 | 3syl 17 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧𝜑 → (∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑥∃𝑦∃𝑧𝜓)) |
18 | | 19.9v 1859 |
. . . 4
⊢
(∃𝑥∃𝑦∃𝑧𝜓 ↔ ∃𝑦∃𝑧𝜓) |
19 | | 19.9v 1859 |
. . . 4
⊢
(∃𝑦∃𝑧𝜓 ↔ ∃𝑧𝜓) |
20 | | 19.9v 1859 |
. . . 4
⊢
(∃𝑧𝜓 ↔ 𝜓) |
21 | 18, 19, 20 | 3bitri 205 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧𝜓 ↔ 𝜓) |
22 | 17, 21 | syl6ib 160 |
. 2
⊢
(∀𝑥∀𝑦∀𝑧𝜑 → (∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜓)) |
23 | 6, 22 | syl5com 29 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) |