ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exbidv GIF version

Theorem 4exbidv 1884
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
4exbidv (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
212exbidv 1882 . 2 (𝜑 → (∃𝑧𝑤𝜓 ↔ ∃𝑧𝑤𝜒))
322exbidv 1882 1 (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ceqsex8v  2809  copsex4g  4280  opbrop  4742  ovi3  6060  brecop  6684  th3q  6699  dfplpq2  7421  dfmpq2  7422  enq0sym  7499  enq0ref  7500  enq0tr  7501  enq0breq  7503  addnq0mo  7514  mulnq0mo  7515  addnnnq0  7516  mulnnnq0  7517  addsrmo  7810  mulsrmo  7811  addsrpr  7812  mulsrpr  7813
  Copyright terms: Public domain W3C validator