ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exbidv GIF version

Theorem 4exbidv 1870
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
4exbidv (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
212exbidv 1868 . 2 (𝜑 → (∃𝑧𝑤𝜓 ↔ ∃𝑧𝑤𝜒))
322exbidv 1868 1 (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ceqsex8v  2782  copsex4g  4247  opbrop  4705  ovi3  6010  brecop  6624  th3q  6639  dfplpq2  7352  dfmpq2  7353  enq0sym  7430  enq0ref  7431  enq0tr  7432  enq0breq  7434  addnq0mo  7445  mulnq0mo  7446  addnnnq0  7447  mulnnnq0  7448  addsrmo  7741  mulsrmo  7742  addsrpr  7743  mulsrpr  7744
  Copyright terms: Public domain W3C validator