| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4exbidv | GIF version | ||
| Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 4exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 4exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | 2exbidv 1882 | . 2 ⊢ (𝜑 → (∃𝑧∃𝑤𝜓 ↔ ∃𝑧∃𝑤𝜒)) |
| 3 | 2 | 2exbidv 1882 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex8v 2809 copsex4g 4281 opbrop 4743 ovi3 6064 brecop 6693 th3q 6708 dfplpq2 7438 dfmpq2 7439 enq0sym 7516 enq0ref 7517 enq0tr 7518 enq0breq 7520 addnq0mo 7531 mulnq0mo 7532 addnnnq0 7533 mulnnnq0 7534 addsrmo 7827 mulsrmo 7828 addsrpr 7829 mulsrpr 7830 |
| Copyright terms: Public domain | W3C validator |