| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4exbidv | GIF version | ||
| Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 4exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 4exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | 2exbidv 1892 | . 2 ⊢ (𝜑 → (∃𝑧∃𝑤𝜓 ↔ ∃𝑧∃𝑤𝜒)) |
| 3 | 2 | 2exbidv 1892 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex8v 2823 copsex4g 4309 opbrop 4772 ovi3 6106 brecop 6735 th3q 6750 dfplpq2 7502 dfmpq2 7503 enq0sym 7580 enq0ref 7581 enq0tr 7582 enq0breq 7584 addnq0mo 7595 mulnq0mo 7596 addnnnq0 7597 mulnnnq0 7598 addsrmo 7891 mulsrmo 7892 addsrpr 7893 mulsrpr 7894 |
| Copyright terms: Public domain | W3C validator |