Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4exbidv | GIF version |
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
4exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
4exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | 2exbidv 1856 | . 2 ⊢ (𝜑 → (∃𝑧∃𝑤𝜓 ↔ ∃𝑧∃𝑤𝜒)) |
3 | 2 | 2exbidv 1856 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ceqsex8v 2771 copsex4g 4225 opbrop 4683 ovi3 5978 brecop 6591 th3q 6606 dfplpq2 7295 dfmpq2 7296 enq0sym 7373 enq0ref 7374 enq0tr 7375 enq0breq 7377 addnq0mo 7388 mulnq0mo 7389 addnnnq0 7390 mulnnnq0 7391 addsrmo 7684 mulsrmo 7685 addsrpr 7686 mulsrpr 7687 |
Copyright terms: Public domain | W3C validator |