| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4exbidv | GIF version | ||
| Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| 4exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 4exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | 2exbidv 1891 | . 2 ⊢ (𝜑 → (∃𝑧∃𝑤𝜓 ↔ ∃𝑧∃𝑤𝜒)) |
| 3 | 2 | 2exbidv 1891 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ceqsex8v 2818 copsex4g 4291 opbrop 4754 ovi3 6083 brecop 6712 th3q 6727 dfplpq2 7467 dfmpq2 7468 enq0sym 7545 enq0ref 7546 enq0tr 7547 enq0breq 7549 addnq0mo 7560 mulnq0mo 7561 addnnnq0 7562 mulnnnq0 7563 addsrmo 7856 mulsrmo 7857 addsrpr 7858 mulsrpr 7859 |
| Copyright terms: Public domain | W3C validator |