![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4exbidv | GIF version |
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
4exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
4exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | 2exbidv 1879 | . 2 ⊢ (𝜑 → (∃𝑧∃𝑤𝜓 ↔ ∃𝑧∃𝑤𝜒)) |
3 | 2 | 2exbidv 1879 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ceqsex8v 2806 copsex4g 4277 opbrop 4739 ovi3 6057 brecop 6681 th3q 6696 dfplpq2 7416 dfmpq2 7417 enq0sym 7494 enq0ref 7495 enq0tr 7496 enq0breq 7498 addnq0mo 7509 mulnq0mo 7510 addnnnq0 7511 mulnnnq0 7512 addsrmo 7805 mulsrmo 7806 addsrpr 7807 mulsrpr 7808 |
Copyright terms: Public domain | W3C validator |