ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exbidv GIF version

Theorem 4exbidv 1863
Description: Formula-building rule for 4 existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
4exbidv (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
212exbidv 1861 . 2 (𝜑 → (∃𝑧𝑤𝜓 ↔ ∃𝑧𝑤𝜒))
322exbidv 1861 1 (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ceqsex8v  2775  copsex4g  4232  opbrop  4690  ovi3  5989  brecop  6603  th3q  6618  dfplpq2  7316  dfmpq2  7317  enq0sym  7394  enq0ref  7395  enq0tr  7396  enq0breq  7398  addnq0mo  7409  mulnq0mo  7410  addnnnq0  7411  mulnnnq0  7412  addsrmo  7705  mulsrmo  7706  addsrpr  7707  mulsrpr  7708
  Copyright terms: Public domain W3C validator