| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqoprab2b | GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4315. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqoprab2b | ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssoprab2b 5983 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) | |
| 2 | ssoprab2b 5983 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑)) | |
| 3 | 1, 2 | anbi12i 460 | . 2 ⊢ (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ∧ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) |
| 4 | eqss 3199 | . 2 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ∧ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑})) | |
| 5 | 2albiim 1502 | . . . 4 ⊢ (∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ (∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑))) | |
| 6 | 5 | albii 1484 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑))) |
| 7 | 19.26 1495 | . . 3 ⊢ (∀𝑥(∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) | |
| 8 | 6, 7 | bitri 184 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) |
| 9 | 3, 4, 8 | 3bitr4i 212 | 1 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ⊆ wss 3157 {coprab 5926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-oprab 5929 |
| This theorem is referenced by: mpo2eqb 6036 |
| Copyright terms: Public domain | W3C validator |