ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqoprab2b GIF version

Theorem eqoprab2b 5949
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4294. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
eqoprab2b ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Proof of Theorem eqoprab2b
StepHypRef Expression
1 ssoprab2b 5948 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
2 ssoprab2b 5948 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∀𝑥𝑦𝑧(𝜓𝜑))
31, 2anbi12i 460 . 2 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
4 eqss 3185 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
5 2albiim 1499 . . . 4 (∀𝑦𝑧(𝜑𝜓) ↔ (∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
65albii 1481 . . 3 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ ∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
7 19.26 1492 . . 3 (∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
86, 7bitri 184 . 2 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
93, 4, 83bitr4i 212 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wss 3144  {coprab 5892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-oprab 5895
This theorem is referenced by:  mpo2eqb  6001
  Copyright terms: Public domain W3C validator