Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqoprab2b | GIF version |
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4264. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
eqoprab2b | ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssoprab2b 5910 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) | |
2 | ssoprab2b 5910 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑)) | |
3 | 1, 2 | anbi12i 457 | . 2 ⊢ (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ∧ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) |
4 | eqss 3162 | . 2 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ∧ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑})) | |
5 | 2albiim 1481 | . . . 4 ⊢ (∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ (∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑))) | |
6 | 5 | albii 1463 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑))) |
7 | 19.26 1474 | . . 3 ⊢ (∀𝑥(∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) | |
8 | 6, 7 | bitri 183 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) |
9 | 3, 4, 8 | 3bitr4i 211 | 1 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 = wceq 1348 ⊆ wss 3121 {coprab 5854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-oprab 5857 |
This theorem is referenced by: mpo2eqb 5962 |
Copyright terms: Public domain | W3C validator |