Proof of Theorem sbnf2
| Step | Hyp | Ref
| Expression |
| 1 | | 2albiim 1502 |
. 2
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
| 2 | | df-nf 1475 |
. . . . 5
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
| 3 | | sbhb 1959 |
. . . . . 6
⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑧(𝜑 → [𝑧 / 𝑥]𝜑)) |
| 4 | 3 | albii 1484 |
. . . . 5
⊢
(∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑧(𝜑 → [𝑧 / 𝑥]𝜑)) |
| 5 | | alcom 1492 |
. . . . 5
⊢
(∀𝑥∀𝑧(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑧∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑)) |
| 6 | 2, 4, 5 | 3bitri 206 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑧∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑)) |
| 7 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑦(𝜑 → [𝑧 / 𝑥]𝜑) |
| 8 | 7 | sb8 1870 |
. . . . . 6
⊢
(∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 → [𝑧 / 𝑥]𝜑)) |
| 9 | | nfs1v 1958 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 10 | 9 | sblim 1976 |
. . . . . . 7
⊢ ([𝑦 / 𝑥](𝜑 → [𝑧 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 11 | 10 | albii 1484 |
. . . . . 6
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 12 | 8, 11 | bitri 184 |
. . . . 5
⊢
(∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 13 | 12 | albii 1484 |
. . . 4
⊢
(∀𝑧∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑧∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 14 | | alcom 1492 |
. . . 4
⊢
(∀𝑧∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 15 | 6, 13, 14 | 3bitri 206 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 16 | | sbhb 1959 |
. . . . . 6
⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
| 17 | 16 | albii 1484 |
. . . . 5
⊢
(∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
| 18 | | alcom 1492 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑)) |
| 19 | 2, 17, 18 | 3bitri 206 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑)) |
| 20 | | nfv 1542 |
. . . . . . 7
⊢
Ⅎ𝑧(𝜑 → [𝑦 / 𝑥]𝜑) |
| 21 | 20 | sb8 1870 |
. . . . . 6
⊢
(∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑧[𝑧 / 𝑥](𝜑 → [𝑦 / 𝑥]𝜑)) |
| 22 | | nfs1v 1958 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| 23 | 22 | sblim 1976 |
. . . . . . 7
⊢ ([𝑧 / 𝑥](𝜑 → [𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 24 | 23 | albii 1484 |
. . . . . 6
⊢
(∀𝑧[𝑧 / 𝑥](𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 25 | 21, 24 | bitri 184 |
. . . . 5
⊢
(∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 26 | 25 | albii 1484 |
. . . 4
⊢
(∀𝑦∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 27 | 19, 26 | bitri 184 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 28 | 15, 27 | anbi12i 460 |
. 2
⊢
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
| 29 | | anidm 396 |
. 2
⊢
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑) ↔ Ⅎ𝑥𝜑) |
| 30 | 1, 28, 29 | 3bitr2ri 209 |
1
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |