Proof of Theorem sbnf2
Step | Hyp | Ref
| Expression |
1 | | 2albiim 1476 |
. 2
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
2 | | df-nf 1449 |
. . . . 5
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) |
3 | | sbhb 1928 |
. . . . . 6
⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑧(𝜑 → [𝑧 / 𝑥]𝜑)) |
4 | 3 | albii 1458 |
. . . . 5
⊢
(∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑧(𝜑 → [𝑧 / 𝑥]𝜑)) |
5 | | alcom 1466 |
. . . . 5
⊢
(∀𝑥∀𝑧(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑧∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑)) |
6 | 2, 4, 5 | 3bitri 205 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑧∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑)) |
7 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑦(𝜑 → [𝑧 / 𝑥]𝜑) |
8 | 7 | sb8 1844 |
. . . . . 6
⊢
(∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦[𝑦 / 𝑥](𝜑 → [𝑧 / 𝑥]𝜑)) |
9 | | nfs1v 1927 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
10 | 9 | sblim 1945 |
. . . . . . 7
⊢ ([𝑦 / 𝑥](𝜑 → [𝑧 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
11 | 10 | albii 1458 |
. . . . . 6
⊢
(∀𝑦[𝑦 / 𝑥](𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
12 | 8, 11 | bitri 183 |
. . . . 5
⊢
(∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
13 | 12 | albii 1458 |
. . . 4
⊢
(∀𝑧∀𝑥(𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑧∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
14 | | alcom 1466 |
. . . 4
⊢
(∀𝑧∀𝑦([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
15 | 6, 13, 14 | 3bitri 205 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
16 | | sbhb 1928 |
. . . . . 6
⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
17 | 16 | albii 1458 |
. . . . 5
⊢
(∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
18 | | alcom 1466 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑)) |
19 | 2, 17, 18 | 3bitri 205 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑)) |
20 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑧(𝜑 → [𝑦 / 𝑥]𝜑) |
21 | 20 | sb8 1844 |
. . . . . 6
⊢
(∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑧[𝑧 / 𝑥](𝜑 → [𝑦 / 𝑥]𝜑)) |
22 | | nfs1v 1927 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
23 | 22 | sblim 1945 |
. . . . . . 7
⊢ ([𝑧 / 𝑥](𝜑 → [𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
24 | 23 | albii 1458 |
. . . . . 6
⊢
(∀𝑧[𝑧 / 𝑥](𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
25 | 21, 24 | bitri 183 |
. . . . 5
⊢
(∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
26 | 25 | albii 1458 |
. . . 4
⊢
(∀𝑦∀𝑥(𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
27 | 19, 26 | bitri 183 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
28 | 15, 27 | anbi12i 456 |
. 2
⊢
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
29 | | anidm 394 |
. 2
⊢
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑) ↔ Ⅎ𝑥𝜑) |
30 | 1, 28, 29 | 3bitr2ri 208 |
1
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |