ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelrel GIF version

Theorem eqrelrel 4820
Description: Extensionality principle for ordered triples, analogous to eqrel 4808. Use relrelss 5255 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
eqrelrel ((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem eqrelrel
StepHypRef Expression
1 unss 3378 . 2 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) ↔ (𝐴𝐵) ⊆ ((V × V) × V))
2 ssrelrel 4819 . . . 4 (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
3 ssrelrel 4819 . . . 4 (𝐵 ⊆ ((V × V) × V) → (𝐵𝐴 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
42, 3bi2anan9 608 . . 3 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴))))
5 eqss 3239 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
6 2albiim 1534 . . . . 5 (∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ (∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
76albii 1516 . . . 4 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ ∀𝑥(∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
8 19.26 1527 . . . 4 (∀𝑥(∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
97, 8bitri 184 . . 3 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
104, 5, 93bitr4g 223 . 2 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
111, 10sylbir 135 1 ((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  wss 3197  cop 3669   × cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator