| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > albiim | GIF version | ||
| Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| albiim | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfbi2 388 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 2 | 1 | albii 1484 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ ∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | 
| 3 | 19.26 1495 | . 2 ⊢ (∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 2albiim 1502 hbbid 1589 equveli 1773 spsbbi 1858 eu1 2070 eqss 3198 ssext 4254 | 
| Copyright terms: Public domain | W3C validator |