| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albiim | GIF version | ||
| Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| albiim | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 2 | 1 | albii 1494 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ ∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | 19.26 1505 | . 2 ⊢ (∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albiim 1512 hbbid 1599 equveli 1783 spsbbi 1868 eu1 2080 eqss 3210 ssext 4270 |
| Copyright terms: Public domain | W3C validator |