ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  albiim GIF version

Theorem albiim 1480
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
albiim (∀𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))

Proof of Theorem albiim
StepHypRef Expression
1 dfbi2 386 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21albii 1463 . 2 (∀𝑥(𝜑𝜓) ↔ ∀𝑥((𝜑𝜓) ∧ (𝜓𝜑)))
3 19.26 1474 . 2 (∀𝑥((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))
42, 3bitri 183 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  2albiim  1481  hbbid  1568  equveli  1752  spsbbi  1837  eu1  2044  eqss  3162  ssext  4206
  Copyright terms: Public domain W3C validator