Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albiim | GIF version |
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
albiim | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 386 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
2 | 1 | albii 1463 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ ∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 19.26 1474 | . 2 ⊢ (∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2albiim 1481 hbbid 1568 equveli 1752 spsbbi 1837 eu1 2044 eqss 3162 ssext 4206 |
Copyright terms: Public domain | W3C validator |