ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant2r GIF version

Theorem 3adant2r 1167
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2r ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com12 1145 . . 3 ((𝜓𝜑𝜒) → 𝜃)
323adant1r 1165 . 2 (((𝜓𝜏) ∧ 𝜑𝜒) → 𝜃)
433com12 1145 1 ((𝜑 ∧ (𝜓𝜏) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 924
This theorem is referenced by:  caovimo  5795  mulassnqg  6887  prarloc  7006  ltexprlemfl  7112  ltexprlemfu  7114  addasssrg  7246  axaddass  7351
  Copyright terms: Public domain W3C validator