ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfu GIF version

Theorem ltexprlemfu 7605
Description: Lemma for ltexpri 7607. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemfu (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemfu
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7499 . . . . . 6 <P ⊆ (P × P)
21brel 4676 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 112 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
54ltexprlempr 7602 . . . 4 (𝐴<P 𝐵𝐶P)
6 df-iplp 7462 . . . . 5 +P = (𝑧P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑧) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑧) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
7 addclnq 7369 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
86, 7genpelvu 7507 . . . 4 ((𝐴P𝐶P) → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢)))
93, 5, 8syl2anc 411 . . 3 (𝐴<P 𝐵 → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢)))
10 simprr 531 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 = (𝑤 +Q 𝑢))
114ltexprlemelu 7593 . . . . . . . . . . 11 (𝑢 ∈ (2nd𝐶) ↔ (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1211biimpi 120 . . . . . . . . . 10 (𝑢 ∈ (2nd𝐶) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1312ad2antlr 489 . . . . . . . . 9 (((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1413simprd 114 . . . . . . . 8 (((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)))
1514adantl 277 . . . . . . 7 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)))
16 prop 7469 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
173, 16syl 14 . . . . . . . . . . . . . 14 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
18 prltlu 7481 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑤 ∈ (2nd𝐴)) → 𝑦 <Q 𝑤)
1917, 18syl3an1 1271 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴) ∧ 𝑤 ∈ (2nd𝐴)) → 𝑦 <Q 𝑤)
20193com23 1209 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
21203adant2r 1233 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
22213adant2r 1233 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
23223adant3r 1235 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦 <Q 𝑤)
24 ltanqg 7394 . . . . . . . . . . . 12 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2524adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
26 elprnql 7475 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
2717, 26sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
2827adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦Q)
29283adant2 1016 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦Q)
30 elprnqu 7476 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤 ∈ (2nd𝐴)) → 𝑤Q)
3117, 30sylan 283 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐴)) → 𝑤Q)
3231adantrr 479 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → 𝑤Q)
3332adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑤Q)
34333adant3 1017 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑤Q)
35 prop 7469 . . . . . . . . . . . . . . . 16 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
365, 35syl 14 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
37 elprnqu 7476 . . . . . . . . . . . . . . 15 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑢 ∈ (2nd𝐶)) → 𝑢Q)
3836, 37sylan 283 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑢 ∈ (2nd𝐶)) → 𝑢Q)
3938adantrl 478 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → 𝑢Q)
4039adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑢Q)
41403adant3 1017 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑢Q)
42 addcomnqg 7375 . . . . . . . . . . . 12 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4342adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4425, 29, 34, 41, 43caovord2d 6039 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑦 <Q 𝑤 ↔ (𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢)))
452simprd 114 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
46 prop 7469 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
4745, 46syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
48 prcunqu 7479 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
4947, 48sylan 283 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5049adantrl 478 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
51503adant2 1016 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5244, 51sylbid 150 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑦 <Q 𝑤 → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5323, 52mpd 13 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
54533expa 1203 . . . . . . 7 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
5515, 54exlimddv 1898 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
5610, 55eqeltrd 2254 . . . . 5 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 ∈ (2nd𝐵))
5756expr 375 . . . 4 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → (𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (2nd𝐵)))
5857rexlimdvva 2602 . . 3 (𝐴<P 𝐵 → (∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (2nd𝐵)))
599, 58sylbid 150 . 2 (𝐴<P 𝐵 → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) → 𝑧 ∈ (2nd𝐵)))
6059ssrdv 3161 1 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  wrex 2456  {crab 2459  wss 3129  cop 3595   class class class wbr 4001  cfv 5213  (class class class)co 5870  1st c1st 6134  2nd c2nd 6135  Qcnq 7274   +Q cplq 7276   <Q cltq 7279  Pcnp 7285   +P cpp 7287  <P cltp 7289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-eprel 4287  df-id 4291  df-po 4294  df-iso 4295  df-iord 4364  df-on 4366  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-recs 6301  df-irdg 6366  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6530  df-ec 6532  df-qs 6536  df-ni 7298  df-pli 7299  df-mi 7300  df-lti 7301  df-plpq 7338  df-mpq 7339  df-enq 7341  df-nqqs 7342  df-plqqs 7343  df-mqqs 7344  df-1nqqs 7345  df-rq 7346  df-ltnqqs 7347  df-enq0 7418  df-nq0 7419  df-0nq0 7420  df-plq0 7421  df-mq0 7422  df-inp 7460  df-iplp 7462  df-iltp 7464
This theorem is referenced by:  ltexpri  7607
  Copyright terms: Public domain W3C validator