ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfu GIF version

Theorem ltexprlemfu 7671
Description: Lemma for ltexpri 7673. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemfu (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemfu
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7565 . . . . . 6 <P ⊆ (P × P)
21brel 4711 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 112 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
54ltexprlempr 7668 . . . 4 (𝐴<P 𝐵𝐶P)
6 df-iplp 7528 . . . . 5 +P = (𝑧P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑧) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑧) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
7 addclnq 7435 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
86, 7genpelvu 7573 . . . 4 ((𝐴P𝐶P) → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢)))
93, 5, 8syl2anc 411 . . 3 (𝐴<P 𝐵 → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢)))
10 simprr 531 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 = (𝑤 +Q 𝑢))
114ltexprlemelu 7659 . . . . . . . . . . 11 (𝑢 ∈ (2nd𝐶) ↔ (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1211biimpi 120 . . . . . . . . . 10 (𝑢 ∈ (2nd𝐶) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1312ad2antlr 489 . . . . . . . . 9 (((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1413simprd 114 . . . . . . . 8 (((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)))
1514adantl 277 . . . . . . 7 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)))
16 prop 7535 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
173, 16syl 14 . . . . . . . . . . . . . 14 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
18 prltlu 7547 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑤 ∈ (2nd𝐴)) → 𝑦 <Q 𝑤)
1917, 18syl3an1 1282 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴) ∧ 𝑤 ∈ (2nd𝐴)) → 𝑦 <Q 𝑤)
20193com23 1211 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
21203adant2r 1235 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
22213adant2r 1235 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
23223adant3r 1237 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦 <Q 𝑤)
24 ltanqg 7460 . . . . . . . . . . . 12 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2524adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
26 elprnql 7541 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
2717, 26sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
2827adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦Q)
29283adant2 1018 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦Q)
30 elprnqu 7542 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤 ∈ (2nd𝐴)) → 𝑤Q)
3117, 30sylan 283 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐴)) → 𝑤Q)
3231adantrr 479 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → 𝑤Q)
3332adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑤Q)
34333adant3 1019 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑤Q)
35 prop 7535 . . . . . . . . . . . . . . . 16 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
365, 35syl 14 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
37 elprnqu 7542 . . . . . . . . . . . . . . 15 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑢 ∈ (2nd𝐶)) → 𝑢Q)
3836, 37sylan 283 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑢 ∈ (2nd𝐶)) → 𝑢Q)
3938adantrl 478 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → 𝑢Q)
4039adantrr 479 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑢Q)
41403adant3 1019 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑢Q)
42 addcomnqg 7441 . . . . . . . . . . . 12 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4342adantl 277 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4425, 29, 34, 41, 43caovord2d 6088 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑦 <Q 𝑤 ↔ (𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢)))
452simprd 114 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
46 prop 7535 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
4745, 46syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
48 prcunqu 7545 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
4947, 48sylan 283 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5049adantrl 478 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
51503adant2 1018 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5244, 51sylbid 150 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑦 <Q 𝑤 → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5323, 52mpd 13 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
54533expa 1205 . . . . . . 7 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
5515, 54exlimddv 1910 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
5610, 55eqeltrd 2270 . . . . 5 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 ∈ (2nd𝐵))
5756expr 375 . . . 4 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → (𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (2nd𝐵)))
5857rexlimdvva 2619 . . 3 (𝐴<P 𝐵 → (∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (2nd𝐵)))
599, 58sylbid 150 . 2 (𝐴<P 𝐵 → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) → 𝑧 ∈ (2nd𝐵)))
6059ssrdv 3185 1 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wrex 2473  {crab 2476  wss 3153  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   +Q cplq 7342   <Q cltq 7345  Pcnp 7351   +P cpp 7353  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  ltexpri  7673
  Copyright terms: Public domain W3C validator