ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfu GIF version

Theorem ltexprlemfu 7443
Description: Lemma for ltexpri 7445. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemfu (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem ltexprlemfu
Dummy variables 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7337 . . . . . 6 <P ⊆ (P × P)
21brel 4599 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 111 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
54ltexprlempr 7440 . . . 4 (𝐴<P 𝐵𝐶P)
6 df-iplp 7300 . . . . 5 +P = (𝑧P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑧) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑧) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 +Q ))}⟩)
7 addclnq 7207 . . . . 5 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
86, 7genpelvu 7345 . . . 4 ((𝐴P𝐶P) → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢)))
93, 5, 8syl2anc 409 . . 3 (𝐴<P 𝐵 → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) ↔ ∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢)))
10 simprr 522 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 = (𝑤 +Q 𝑢))
114ltexprlemelu 7431 . . . . . . . . . . 11 (𝑢 ∈ (2nd𝐶) ↔ (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1211biimpi 119 . . . . . . . . . 10 (𝑢 ∈ (2nd𝐶) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1312ad2antlr 481 . . . . . . . . 9 (((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → (𝑢Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))))
1413simprd 113 . . . . . . . 8 (((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)))
1514adantl 275 . . . . . . 7 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)))
16 prop 7307 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
173, 16syl 14 . . . . . . . . . . . . . 14 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
18 prltlu 7319 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑤 ∈ (2nd𝐴)) → 𝑦 <Q 𝑤)
1917, 18syl3an1 1250 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴) ∧ 𝑤 ∈ (2nd𝐴)) → 𝑦 <Q 𝑤)
20193com23 1188 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
21203adant2r 1212 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
22213adant2r 1212 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑤)
23223adant3r 1214 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦 <Q 𝑤)
24 ltanqg 7232 . . . . . . . . . . . 12 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2524adantl 275 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
26 elprnql 7313 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
2717, 26sylan 281 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
2827adantrr 471 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦Q)
29283adant2 1001 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑦Q)
30 elprnqu 7314 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑤 ∈ (2nd𝐴)) → 𝑤Q)
3117, 30sylan 281 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑤 ∈ (2nd𝐴)) → 𝑤Q)
3231adantrr 471 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → 𝑤Q)
3332adantrr 471 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑤Q)
34333adant3 1002 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑤Q)
35 prop 7307 . . . . . . . . . . . . . . . 16 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
365, 35syl 14 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
37 elprnqu 7314 . . . . . . . . . . . . . . 15 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑢 ∈ (2nd𝐶)) → 𝑢Q)
3836, 37sylan 281 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑢 ∈ (2nd𝐶)) → 𝑢Q)
3938adantrl 470 . . . . . . . . . . . . 13 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → 𝑢Q)
4039adantrr 471 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑢Q)
41403adant3 1002 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → 𝑢Q)
42 addcomnqg 7213 . . . . . . . . . . . 12 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4342adantl 275 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4425, 29, 34, 41, 43caovord2d 5948 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑦 <Q 𝑤 ↔ (𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢)))
452simprd 113 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
46 prop 7307 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
4745, 46syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
48 prcunqu 7317 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
4947, 48sylan 281 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵)) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5049adantrl 470 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
51503adant2 1001 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → ((𝑦 +Q 𝑢) <Q (𝑤 +Q 𝑢) → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5244, 51sylbid 149 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑦 <Q 𝑤 → (𝑤 +Q 𝑢) ∈ (2nd𝐵)))
5323, 52mpd 13 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢)) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
54533expa 1182 . . . . . . 7 (((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑢) ∈ (2nd𝐵))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
5515, 54exlimddv 1871 . . . . . 6 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → (𝑤 +Q 𝑢) ∈ (2nd𝐵))
5610, 55eqeltrd 2217 . . . . 5 ((𝐴<P 𝐵 ∧ ((𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑢))) → 𝑧 ∈ (2nd𝐵))
5756expr 373 . . . 4 ((𝐴<P 𝐵 ∧ (𝑤 ∈ (2nd𝐴) ∧ 𝑢 ∈ (2nd𝐶))) → (𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (2nd𝐵)))
5857rexlimdvva 2560 . . 3 (𝐴<P 𝐵 → (∃𝑤 ∈ (2nd𝐴)∃𝑢 ∈ (2nd𝐶)𝑧 = (𝑤 +Q 𝑢) → 𝑧 ∈ (2nd𝐵)))
599, 58sylbid 149 . 2 (𝐴<P 𝐵 → (𝑧 ∈ (2nd ‘(𝐴 +P 𝐶)) → 𝑧 ∈ (2nd𝐵)))
6059ssrdv 3108 1 (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wex 1469  wcel 1481  wrex 2418  {crab 2421  wss 3076  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112   +Q cplq 7114   <Q cltq 7117  Pcnp 7123   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  ltexpri  7445
  Copyright terms: Public domain W3C validator