ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant2l GIF version

Theorem 3adant2l 1235
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant2l ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adant2l
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com12 1210 . . 3 ((𝜓𝜑𝜒) → 𝜃)
323adant1l 1233 . 2 (((𝜏𝜓) ∧ 𝜑𝜒) → 𝜃)
433com12 1210 1 ((𝜑 ∧ (𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  sbthlemi4  7074  addassnqg  7508  mulassnqg  7510  prmuloc  7692  ltpopr  7721  addasssrg  7882  axaddass  7998
  Copyright terms: Public domain W3C validator