Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3adant2l | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant2l | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com12 1189 | . . 3 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
3 | 2 | 3adant1l 1212 | . 2 ⊢ (((𝜏 ∧ 𝜓) ∧ 𝜑 ∧ 𝜒) → 𝜃) |
4 | 3 | 3com12 1189 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: sbthlemi4 6904 addassnqg 7302 mulassnqg 7304 prmuloc 7486 ltpopr 7515 addasssrg 7676 axaddass 7792 |
Copyright terms: Public domain | W3C validator |