ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovimo GIF version

Theorem caovimo 6085
Description: Uniqueness of inverse element in commutative, associative operation with identity. The identity element is 𝐵. (Contributed by Jim Kingdon, 18-Sep-2019.)
Hypotheses
Ref Expression
caovimo.idel 𝐵𝑆
caovimo.com ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovimo.ass ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovimo.id (𝑥𝑆 → (𝑥𝐹𝐵) = 𝑥)
Assertion
Ref Expression
caovimo (𝐴𝑆 → ∃*𝑤(𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐵(𝑧)

Proof of Theorem caovimo
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5898 . . . . . . 7 ((𝐴𝐹𝑤) = 𝐵 → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐵𝐹𝑣))
21adantl 277 . . . . . 6 ((𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐵𝐹𝑣))
323ad2ant2 1021 . . . . 5 ((𝐴𝑆 ∧ (𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐵𝐹𝑣))
4 df-3an 982 . . . . . . . . 9 ((𝐴𝑆𝑤𝑆𝑣𝑆) ↔ ((𝐴𝑆𝑤𝑆) ∧ 𝑣𝑆))
5 caovimo.ass . . . . . . . . . . . . . 14 ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
65adantl 277 . . . . . . . . . . . . 13 (((𝐴𝑆𝑤𝑆𝑣𝑆) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
7 simp1 999 . . . . . . . . . . . . 13 ((𝐴𝑆𝑤𝑆𝑣𝑆) → 𝐴𝑆)
8 simp2 1000 . . . . . . . . . . . . 13 ((𝐴𝑆𝑤𝑆𝑣𝑆) → 𝑤𝑆)
9 simp3 1001 . . . . . . . . . . . . 13 ((𝐴𝑆𝑤𝑆𝑣𝑆) → 𝑣𝑆)
106, 7, 8, 9caovassd 6051 . . . . . . . . . . . 12 ((𝐴𝑆𝑤𝑆𝑣𝑆) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐴𝐹(𝑤𝐹𝑣)))
11 caovimo.com . . . . . . . . . . . . . 14 ((𝑥𝑆𝑦𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
1211adantl 277 . . . . . . . . . . . . 13 (((𝐴𝑆𝑤𝑆𝑣𝑆) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
137, 8, 9, 12, 6caov12d 6073 . . . . . . . . . . . 12 ((𝐴𝑆𝑤𝑆𝑣𝑆) → (𝐴𝐹(𝑤𝐹𝑣)) = (𝑤𝐹(𝐴𝐹𝑣)))
1410, 13eqtrd 2222 . . . . . . . . . . 11 ((𝐴𝑆𝑤𝑆𝑣𝑆) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝑤𝐹(𝐴𝐹𝑣)))
1514adantr 276 . . . . . . . . . 10 (((𝐴𝑆𝑤𝑆𝑣𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝑤𝐹(𝐴𝐹𝑣)))
16 oveq2 5899 . . . . . . . . . . . 12 ((𝐴𝐹𝑣) = 𝐵 → (𝑤𝐹(𝐴𝐹𝑣)) = (𝑤𝐹𝐵))
17 oveq1 5898 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥𝐹𝐵) = (𝑤𝐹𝐵))
18 id 19 . . . . . . . . . . . . . 14 (𝑥 = 𝑤𝑥 = 𝑤)
1917, 18eqeq12d 2204 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝑥𝐹𝐵) = 𝑥 ↔ (𝑤𝐹𝐵) = 𝑤))
20 caovimo.id . . . . . . . . . . . . 13 (𝑥𝑆 → (𝑥𝐹𝐵) = 𝑥)
2119, 20vtoclga 2818 . . . . . . . . . . . 12 (𝑤𝑆 → (𝑤𝐹𝐵) = 𝑤)
2216, 21sylan9eqr 2244 . . . . . . . . . . 11 ((𝑤𝑆 ∧ (𝐴𝐹𝑣) = 𝐵) → (𝑤𝐹(𝐴𝐹𝑣)) = 𝑤)
23223ad2antl2 1162 . . . . . . . . . 10 (((𝐴𝑆𝑤𝑆𝑣𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → (𝑤𝐹(𝐴𝐹𝑣)) = 𝑤)
2415, 23eqtrd 2222 . . . . . . . . 9 (((𝐴𝑆𝑤𝑆𝑣𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤)
254, 24sylanbr 285 . . . . . . . 8 ((((𝐴𝑆𝑤𝑆) ∧ 𝑣𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤)
2625anasss 399 . . . . . . 7 (((𝐴𝑆𝑤𝑆) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤)
27263impa 1196 . . . . . 6 ((𝐴𝑆𝑤𝑆 ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤)
28273adant2r 1235 . . . . 5 ((𝐴𝑆 ∧ (𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤)
2911adantl 277 . . . . . . . . 9 ((𝑣𝑆 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
30 caovimo.idel . . . . . . . . . 10 𝐵𝑆
3130a1i 9 . . . . . . . . 9 (𝑣𝑆𝐵𝑆)
32 id 19 . . . . . . . . 9 (𝑣𝑆𝑣𝑆)
3329, 31, 32caovcomd 6048 . . . . . . . 8 (𝑣𝑆 → (𝐵𝐹𝑣) = (𝑣𝐹𝐵))
34 oveq1 5898 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝑥𝐹𝐵) = (𝑣𝐹𝐵))
35 id 19 . . . . . . . . . 10 (𝑥 = 𝑣𝑥 = 𝑣)
3634, 35eqeq12d 2204 . . . . . . . . 9 (𝑥 = 𝑣 → ((𝑥𝐹𝐵) = 𝑥 ↔ (𝑣𝐹𝐵) = 𝑣))
3736, 20vtoclga 2818 . . . . . . . 8 (𝑣𝑆 → (𝑣𝐹𝐵) = 𝑣)
3833, 37eqtrd 2222 . . . . . . 7 (𝑣𝑆 → (𝐵𝐹𝑣) = 𝑣)
3938adantr 276 . . . . . 6 ((𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵) → (𝐵𝐹𝑣) = 𝑣)
40393ad2ant3 1022 . . . . 5 ((𝐴𝑆 ∧ (𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → (𝐵𝐹𝑣) = 𝑣)
413, 28, 403eqtr3d 2230 . . . 4 ((𝐴𝑆 ∧ (𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣)
42413expib 1208 . . 3 (𝐴𝑆 → (((𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣))
4342alrimivv 1886 . 2 (𝐴𝑆 → ∀𝑤𝑣(((𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣))
44 eleq1 2252 . . . 4 (𝑤 = 𝑣 → (𝑤𝑆𝑣𝑆))
45 oveq2 5899 . . . . 5 (𝑤 = 𝑣 → (𝐴𝐹𝑤) = (𝐴𝐹𝑣))
4645eqeq1d 2198 . . . 4 (𝑤 = 𝑣 → ((𝐴𝐹𝑤) = 𝐵 ↔ (𝐴𝐹𝑣) = 𝐵))
4744, 46anbi12d 473 . . 3 (𝑤 = 𝑣 → ((𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ↔ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)))
4847mo4 2099 . 2 (∃*𝑤(𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ↔ ∀𝑤𝑣(((𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣))
4943, 48sylibr 134 1 (𝐴𝑆 → ∃*𝑤(𝑤𝑆 ∧ (𝐴𝐹𝑤) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wal 1362   = wceq 1364  ∃*wmo 2039  wcel 2160  (class class class)co 5891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5193  df-fv 5239  df-ov 5894
This theorem is referenced by:  recmulnqg  7408
  Copyright terms: Public domain W3C validator