ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addasssrg GIF version

Theorem addasssrg 7951
Description: Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
addasssrg ((𝐴R𝐵R𝐶R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)))

Proof of Theorem addasssrg
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7922 . 2 R = ((P × P) / ~R )
2 addsrpr 7940 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
3 addsrpr 7940 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R )
4 addsrpr 7940 . 2 ((((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R +R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑥 +P 𝑧) +P 𝑣), ((𝑦 +P 𝑤) +P 𝑢)⟩] ~R )
5 addsrpr 7940 . 2 (((𝑥P𝑦P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨(𝑧 +P 𝑣), (𝑤 +P 𝑢)⟩] ~R ) = [⟨(𝑥 +P (𝑧 +P 𝑣)), (𝑦 +P (𝑤 +P 𝑢))⟩] ~R )
6 addclpr 7732 . . . 4 ((𝑥P𝑧P) → (𝑥 +P 𝑧) ∈ P)
7 addclpr 7732 . . . 4 ((𝑦P𝑤P) → (𝑦 +P 𝑤) ∈ P)
86, 7anim12i 338 . . 3 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
98an4s 590 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
10 addclpr 7732 . . . 4 ((𝑧P𝑣P) → (𝑧 +P 𝑣) ∈ P)
11 addclpr 7732 . . . 4 ((𝑤P𝑢P) → (𝑤 +P 𝑢) ∈ P)
1210, 11anim12i 338 . . 3 (((𝑧P𝑣P) ∧ (𝑤P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
1312an4s 590 . 2 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P))
14 addassprg 7774 . . . . 5 ((𝑥P𝑧P𝑣P) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣)))
15143adant1r 1255 . . . 4 (((𝑥P𝑦P) ∧ 𝑧P𝑣P) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣)))
16153adant2r 1257 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ 𝑣P) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣)))
17163adant3r 1259 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣)))
18 addassprg 7774 . . . . 5 ((𝑦P𝑤P𝑢P) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢)))
19183adant1l 1254 . . . 4 (((𝑥P𝑦P) ∧ 𝑤P𝑢P) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢)))
20193adant2l 1256 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ 𝑢P) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢)))
21203adant3l 1258 . 2 (((𝑥P𝑦P) ∧ (𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢)))
221, 2, 3, 4, 5, 9, 13, 17, 21ecoviass 6800 1 ((𝐴R𝐵R𝐶R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  (class class class)co 6007  Pcnp 7486   +P cpp 7488   ~R cer 7491  Rcnr 7492   +R cplr 7496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-2o 6569  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-enq0 7619  df-nq0 7620  df-0nq0 7621  df-plq0 7622  df-mq0 7623  df-inp 7661  df-iplp 7663  df-enr 7921  df-nr 7922  df-plr 7923
This theorem is referenced by:  ltm1sr  7972  caucvgsrlemoffval  7991  caucvgsrlemoffcau  7993  caucvgsrlemoffres  7995  caucvgsr  7997  map2psrprg  8000  axaddass  8067  axmulass  8068  axdistr  8069
  Copyright terms: Public domain W3C validator