Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addasssrg | GIF version |
Description: Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
Ref | Expression |
---|---|
addasssrg | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7626 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | addsrpr 7644 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
3 | addsrpr 7644 | . 2 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([〈𝑧, 𝑤〉] ~R +R [〈𝑣, 𝑢〉] ~R ) = [〈(𝑧 +P 𝑣), (𝑤 +P 𝑢)〉] ~R ) | |
4 | addsrpr 7644 | . 2 ⊢ ((((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ([〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R +R [〈𝑣, 𝑢〉] ~R ) = [〈((𝑥 +P 𝑧) +P 𝑣), ((𝑦 +P 𝑤) +P 𝑢)〉] ~R ) | |
5 | addsrpr 7644 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈(𝑧 +P 𝑣), (𝑤 +P 𝑢)〉] ~R ) = [〈(𝑥 +P (𝑧 +P 𝑣)), (𝑦 +P (𝑤 +P 𝑢))〉] ~R ) | |
6 | addclpr 7436 | . . . 4 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) ∈ P) | |
7 | addclpr 7436 | . . . 4 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) ∈ P) | |
8 | 6, 7 | anim12i 336 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
9 | 8 | an4s 578 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
10 | addclpr 7436 | . . . 4 ⊢ ((𝑧 ∈ P ∧ 𝑣 ∈ P) → (𝑧 +P 𝑣) ∈ P) | |
11 | addclpr 7436 | . . . 4 ⊢ ((𝑤 ∈ P ∧ 𝑢 ∈ P) → (𝑤 +P 𝑢) ∈ P) | |
12 | 10, 11 | anim12i 336 | . . 3 ⊢ (((𝑧 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑤 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
13 | 12 | an4s 578 | . 2 ⊢ (((𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ((𝑧 +P 𝑣) ∈ P ∧ (𝑤 +P 𝑢) ∈ P)) |
14 | addassprg 7478 | . . . . 5 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P ∧ 𝑣 ∈ P) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣))) | |
15 | 14 | 3adant1r 1210 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑧 ∈ P ∧ 𝑣 ∈ P) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣))) |
16 | 15 | 3adant2r 1212 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ 𝑣 ∈ P) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣))) |
17 | 16 | 3adant3r 1214 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ((𝑥 +P 𝑧) +P 𝑣) = (𝑥 +P (𝑧 +P 𝑣))) |
18 | addassprg 7478 | . . . . 5 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P ∧ 𝑢 ∈ P) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢))) | |
19 | 18 | 3adant1l 1209 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑤 ∈ P ∧ 𝑢 ∈ P) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢))) |
20 | 19 | 3adant2l 1211 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ 𝑢 ∈ P) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢))) |
21 | 20 | 3adant3l 1213 | . 2 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑣 ∈ P ∧ 𝑢 ∈ P)) → ((𝑦 +P 𝑤) +P 𝑢) = (𝑦 +P (𝑤 +P 𝑢))) |
22 | 1, 2, 3, 4, 5, 9, 13, 17, 21 | ecoviass 6579 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 (class class class)co 5814 Pcnp 7190 +P cpp 7192 ~R cer 7195 Rcnr 7196 +R cplr 7200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-eprel 4244 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-1o 6353 df-2o 6354 df-oadd 6357 df-omul 6358 df-er 6469 df-ec 6471 df-qs 6475 df-ni 7203 df-pli 7204 df-mi 7205 df-lti 7206 df-plpq 7243 df-mpq 7244 df-enq 7246 df-nqqs 7247 df-plqqs 7248 df-mqqs 7249 df-1nqqs 7250 df-rq 7251 df-ltnqqs 7252 df-enq0 7323 df-nq0 7324 df-0nq0 7325 df-plq0 7326 df-mq0 7327 df-inp 7365 df-iplp 7367 df-enr 7625 df-nr 7626 df-plr 7627 |
This theorem is referenced by: ltm1sr 7676 caucvgsrlemoffval 7695 caucvgsrlemoffcau 7697 caucvgsrlemoffres 7699 caucvgsr 7701 map2psrprg 7704 axaddass 7771 axmulass 7772 axdistr 7773 |
Copyright terms: Public domain | W3C validator |